DETAILED GUIDE LINES AND SYLLABUS FOR B. Sc. IN FOOTWEAR ENGINEERING (FOUR YEARS COURSE)

FIRST YEAR

Approved by Academic Council
University of Dhaka

Institute of Leather Engineering and Technology
University of Dhaka, Hazardibagh, Dhaka-1209.
RULES AND REGULATIONS APPLICABLE FOR
INSTITUTE OF LEATHER ENGINEERING AND TECHNOLOGY
DEPARTMENT : FOOTWEAR ENGINEERING

A. ACADEMIC RULES

1. The Institute of Leather Engineering and Technology (ILET), Hazaribagh, Dhaka shall be deemed to be an institute of the University of Dhaka.

2. The degree to be awarded by the University of Dhaka shall be designated as B. Sc. in Footwear Engineering.

3. The Courses for the B. Sc. in Footwear Engineering shall extend over four academic years.

4. The medium of instruction and examination shall be in English.

5. Every year there will be an admission test for new intakes. The rules and regulations and other necessary works for the admission purpose will be performed by the central admission committee of the University.

6. Candidates for admission to the first year B. Sc. in Footwear Engineering shall be required to have passed the Higher Secondary Certificate in Science with Physics, Chemistry and Mathematics or its equivalent from a recognized Board or Institution. Foreign students with requisite qualification may be admitted with the approval of the University of Dhaka.

7. Admission to the first year B. Sc. in Footwear Engineering programme shall be based on the results of S.S.C. and H.S.C. or its equivalent examinations and the admission test to be conducted based on current rules by the Central Admission Committee.

8. The detail syllabus for degree of Footwear Engineering shall be approved by Academic Council of the University of Dhaka.

9. An Examination Committee for each year consisting of 4 (four) members of which 3 (three) shall be internal and 1 (one) from other departments of the Institute or the university or research organization shall be constituted by the departmental academic committee. Any full time teacher of the concerned department of the Institute shall be the chairman of the examination committee.

10. There shall be a Departmental Academic Committee consisting of all the full-time teaching staff to help academic matters.

11. Every year before the commencement of Academic session the list of part time teachers (if required) shall be prepared course wise and must be approved by the dean of the concern Faculty of Dhaka University. Dean will have the right to modify the list with the consultation with the concern head of the department and the Director of the institute.
12. The question paper setters and the examiners will be selected by the Examination Committee from a panel approved by the University.
13. The question papers shall be moderated by the Examination Committee.
14. No candidate shall be eligible for degree of B. Sc. in Footwear Engineering unless he or she has undergone the approved courses of study for a minimum period of four academic years and maximum of six academic years.
15. There shall be 15, 1-class hour lectures for 1 credit of theory classes. There shall be 30 hour lectures for 1 credit of Practical classes. Each of the class duration is 50 minutes.
16. No student shall be allowed to study any other degree programme during his/her study in Institute of Leather Engineering and Technology.

B. CURRICULUM AND EXAMINATION RULES

17. The subjects to be studied and the scheme of examinations for B. Sc. in Footwear Engineering courses are given in Annexure-A.
18. There shall be a final examination at the end of each academic year to be conducted by the University of Dhaka.
19. Two examiners, of whom one will be the course teacher and the others, shall be from other departments of the Institute or University or research organization. The average of two will be taken as final. In case of the difference of more than 20% marks between the two examiners, the script/ scripts will be evaluated by a third examiner appointed by the Examination Committee from the approved panel and the average of nearest two marks will be taken as final. In the case of equal difference between the marks of three examiners the middle marks will be taken as final.
20. Final practical examinations will be conducted jointly by Four examiners, 3 (three) internal and 1 (one) external appointed by the examination committee.
21. Grades and grade points will be awarded on the basis of marks obtained in the written, oral or practical examinations and/or laboratory performance according to the following scheme:

<table>
<thead>
<tr>
<th>Marks Obtained (%)</th>
<th>Grade</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-100</td>
<td>A+</td>
<td>4.0</td>
</tr>
<tr>
<td>75-79</td>
<td>A</td>
<td>3.75</td>
</tr>
<tr>
<td>70-74</td>
<td>A−</td>
<td>3.50</td>
</tr>
<tr>
<td>65-69</td>
<td>B+</td>
<td>3.25</td>
</tr>
<tr>
<td>60-64</td>
<td>B</td>
<td>3.00</td>
</tr>
<tr>
<td>55-59</td>
<td>B−</td>
<td>2.75</td>
</tr>
<tr>
<td>Marks Obtained (%)</td>
<td>Grade</td>
<td>Grade Point</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td><40</td>
<td>F</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Incomplete</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Withdrawn</td>
</tr>
</tbody>
</table>

A student obtaining ‘D’ or higher grade will be counted as credits earned by him/her. A student obtaining ‘F’ grade will not be counted towards his earned credits.

The GPA (grade point average) will be calculated according to the following formula:

\[
\text{GPA} = \frac{\sum (\text{Grade points in a course} \times \text{Credits for the course})}{\text{Total credits taken}}
\]

CGPA = Cumulative GPA for different years.

22. The total performance of a student in a given course is based on continuous assessment and course final examinations.

(i) For theory courses the assessment is made through in-course assessment, and final examinations;

(ii) The assessment of laboratory and / or field courses will be made through observation of the student at work, viva-voce, assignments and evaluation of practical reports.

An examination committee for each year shall be constituted at the beginning of the session.

The distribution of marks for a course will be as follows:

(a) Theory courses:

 (i) In-course assessment: 30% of total marks shall be taken as in-course assessment. 5% marks will be awarded on the basis of attendance as follows:

<table>
<thead>
<tr>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% and above</td>
</tr>
<tr>
<td>85% to less than 90%</td>
</tr>
<tr>
<td>80% to less than 85%</td>
</tr>
<tr>
<td>75% to less than 80%</td>
</tr>
<tr>
<td>60% to less than 75%</td>
</tr>
<tr>
<td>Less than 60%</td>
</tr>
</tbody>
</table>

(ii) Course final examination 70% of total marks
(iii) Continuous assessment for practical courses 40% of total marks

(iv) Practical Final Examination 60% of total marks

(b) In-course assessment for theory courses: In-course assessment will be done by taking class tests.

(i) Maximum duration of in-course tests will be one class hour.
(ii) Questions for in-course tests may preferably be of multiple choice (MCQ) type. Students may also be evaluated using short questions as decided by the course teacher.
(iii) At least one test for 2 credits hour courses and two tests for 3 or 4 credit hour courses will be taken.
(iv) Course teachers must announce results within 4 weeks of holding the examination.
(v) The course teacher will show the assessed in-course scripts to the students.
(vi) Marks for in-course assessment must be submitted by the course teacher to the Chairman of the Examination Committee and Controller of Examinations before holding the final examination.

(c) Continuous assessment for Practical courses: Continuous assessment will be done on the basis of class performance, report writing and class attendance.

(d) Year-final examination (Theory & Practical courses):

(i) Student having attendance 75% or more (Collegiate) are eligible to appear in the final examination.

(ii) Students having attendance 60-74% are eligible for sitting in the final examination on payment of fees as decided by the University.

(iii) Student having attendance less than 60% are not allowed to sit in the final examination.

(iv) The year final examination will be conducted centrally by Controller of examinations as existing system.

(v) The duration of theoretical examinations will be follows:

<table>
<thead>
<tr>
<th>Credit</th>
<th>Duration of theory examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 credit theory course</td>
<td>4 hours</td>
</tr>
<tr>
<td>3 credit theory course</td>
<td>3 hours</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2 credit theory course</td>
<td>2.5 hours</td>
</tr>
</tbody>
</table>

(vi) Duration of practical examinations will be from 4-6 hours irrespective of credit hours.

(vii) For final examinations, there will be two examiners: first examiner will be one of the course teachers and the second examiner will be from other departments of the Institute or University or Research organization. Evaluation will be made under the existing rule.

(viii) Marks for final examination will be evaluated by broad and short answer questions. Practice of giving options should be avoided as far as possible.

23. A student has to take the required courses for a particular year, appear at the annual examination and score a minimum specified GPA/CGPA to be promoted to the next year.

Promotion to the next year will be given if a student scores minimum GPA/CGPA as follows:

- 1st year to 2nd year: GPA 2.00 (D)
- 2nd year to 3rd year: CGPA 2.25 (C)
- 3rd year to 4th year: CGPA 2.25 (C)

24. The requirements for the award of the Bachelor of Engineering degree are as follows of the Department:

(i) Completion of the courses for the minimum required credits in a maximum period of six academic years;
(ii) Appearing at the final examination in all the required courses;
(iii) Scoring a CGPA of 2.5, after considering the grades of improvement Examinations.

25. A student must complete his/her studies for a Bachelor’s Degree within a maximum period of six academic years.

26. Improvement/retake will be followed by:

(i) If students obtain a grade C+ or lower in a course in any year, he/she will be allowed to repeat the term-final examination only once with the following batch for the purpose of grade improvement, but he/she will not be eligible to get a grade better than ‘B’ in such a course. A student failing to improve his/her grade in a course can retain the earlier grade.
(ii) Grade improvement will not be allowed in those courses in which a student obtains grade better than ‘C+’.

(iii) A student will be allowed to repeat a maximum of 20 credits in four years B.Sc. Program for grade improvement purpose.

(iv) Improvement Examination will be taken only for term-final test. No improvement examination will be taken for in-course, practical course, field work, assignment and oral presentation.

27. (i) A course in which a student has obtained ‘D’ or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained ‘F’ grade will not be counted towards his earned credits.

(ii) A student who obtains ‘F’ grade in a course will be allowed to improve the grade two times with any following batches with a condition that he/she has to complete the Bachelor of Engineering Program within period of 6(six) academic years from the date of first admission.

(iii) ‘F’ grade will not be counted for GPA calculation. But will stay permanently on grade sheet and Transcript. When a student will repeat a course in which he/she previously obtained ‘F’ grade, he/she will not be eligible to get grade better than ‘B+’ (grade point 3.25) in such a course.

28. Readmission will be followed by:

(i) A student may seek re-admission provided he/she has at least 30% attendance in the present year and may continue studies as a regular student.

(ii) On re-admission grade earned earlier by a student in the class of re-admission shall in general cease to exist and the student has to retake all courses and examination but in case if they do not get the opportunity to repeat the courses due to late admission, marks of in-course assessment and laboratory performance assessment in the previous year may be retained by the students.

29. Drop out will be followed by:

A student failing to earn the yearly GPA for promotion from one year to next year after taking improvement / readmission in any year shall be dropped out of the program.

30. Dean’s Award will be followed by:

As a recognition of excellent performance, the names of students obtaining an average CGPA of 3.75 or above in an academic year without appearing any improvement examination may be Published in the list of Dean’s award of the Faculty.
31. The failed candidates may seek readmission into the concerned classes on payment of usual fees except university registration fee or may appear in the concerned examination irregular candidates provided they have passed in all practical subjects on payment of examination and center fees as fixed by the University. The marks obtained by the irregular candidates in the practical examinations; in-course assessment and the project work (if applicable) in the earlier session shall be counted in deciding the results of their examinations.

32. The University may from time to time revise, amend or change rules and regulations and scheme of examinations and syllabus. In the case of students already undergoing the course, the changes will take effect from the beginning of the following academic year after the changes are introduced and shall cover the part of the courses that remain to be completed.

33. In the case of any dispute in interpretation of the rules and regulations regarding the degree programme of B.Sc. in Footwear Engineering, the decision of the Academic Council of University of Dhaka shall be final.
FIRST YEAR

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A*</td>
<td>B*</td>
<td>C*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70%</td>
<td>25%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>FE-101</td>
<td>Manufacturing Technology of Footwear-I</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>02.</td>
<td>FE-102</td>
<td>Manufacturing Technology of Footwear-I Practical</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03.</td>
<td>FE-103</td>
<td>Physical Chemistry</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>04.</td>
<td>FE-105</td>
<td>Inorganic Chemistry</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>05.</td>
<td>FE-107</td>
<td>Organic Chemistry</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>06.</td>
<td>FE-108</td>
<td>Chemistry Practical</td>
<td>-</td>
<td>4</td>
<td>- - -</td>
</tr>
<tr>
<td>07.</td>
<td>FE-109</td>
<td>Physics</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>08.</td>
<td>FE-110</td>
<td>Physics Practical</td>
<td>-</td>
<td>2</td>
<td>- - -</td>
</tr>
<tr>
<td>09.</td>
<td>FE-112</td>
<td>Engineering Drawing</td>
<td>-</td>
<td>2</td>
<td>- - -</td>
</tr>
<tr>
<td>10.</td>
<td>FE-113</td>
<td>Computer and Information Engineering</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>11.</td>
<td>FE-114</td>
<td>Computer and Information Engineering-Practical</td>
<td>-</td>
<td>2</td>
<td>- - -</td>
</tr>
<tr>
<td>12.</td>
<td>FE-115</td>
<td>Mathematics-I</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>13.</td>
<td>FE-117</td>
<td>Business and Communicative English for Engineers</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>24 14</td>
<td>560 200 40</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance; B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A* 70% B* 25% C* 5%</td>
<td>A* 60% B** 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>01.</td>
<td>FE-201</td>
<td>Manufacturing Technology of Footwear-II</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>02.</td>
<td>FE-202</td>
<td>Manufacturing Technology of Footwear-II Practical</td>
<td>4</td>
<td></td>
<td>60 40 100</td>
</tr>
<tr>
<td>03.</td>
<td>FE-203</td>
<td>Applied Chemistry and Chemical Engineering</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>04.</td>
<td>FE-204</td>
<td>Applied Chemistry and Chemical Engineering Practical</td>
<td>4</td>
<td></td>
<td>60 40 100</td>
</tr>
<tr>
<td>05.</td>
<td>FE-205</td>
<td>Materials Science & Technology</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>06.</td>
<td>FE-207</td>
<td>Mathematics-II</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>07.</td>
<td>FE-209</td>
<td>Statistics</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>08.</td>
<td>FE-211</td>
<td>Mechanical Engineering for Footwear Manufacture</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>09.</td>
<td>FE-212</td>
<td>Mechanical Engineering for Footwear Manufacture Practical</td>
<td>- 2</td>
<td>-</td>
<td>- - 60 40 100</td>
</tr>
<tr>
<td>10.</td>
<td>FE-213</td>
<td>Electrical and Electronic Engineering</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>11.</td>
<td>FE-214</td>
<td>Electrical and Electronic Engineering Practical</td>
<td>- 2</td>
<td>-</td>
<td>- - 60 40 100</td>
</tr>
<tr>
<td>12.</td>
<td>FE-215</td>
<td>Industrial Management for Footwear Manufacture</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>13.</td>
<td>FE-216</td>
<td>Computer Graphics Design</td>
<td>- 2</td>
<td>-</td>
<td>- - 60 40 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>24 14</td>
<td>560 200 40 300 200</td>
<td>1300</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance, B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
THIRD YEAR

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A* 70%</td>
<td>B* 25%</td>
</tr>
<tr>
<td>01.</td>
<td>FE-301</td>
<td>Manufacturing Technology of Footwear-III</td>
<td>3</td>
<td>70 25 5</td>
<td></td>
</tr>
<tr>
<td>02.</td>
<td>FE-302</td>
<td>Manufacturing Technology of Footwear-III Practical</td>
<td>4</td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>03.</td>
<td>FE-303</td>
<td>Analytical Chemistry for Footwear Manufacture-I</td>
<td>3</td>
<td>70 25 5</td>
<td></td>
</tr>
<tr>
<td>04.</td>
<td>FE-304</td>
<td>Analytical Chemistry for Footwear Manufacture Practical</td>
<td>2</td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>05.</td>
<td>FE-305</td>
<td>Leather Technology-I</td>
<td>3</td>
<td>70 25 5</td>
<td></td>
</tr>
<tr>
<td>06.</td>
<td>FE-306</td>
<td>Leather Technology-I Practical</td>
<td>2</td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>07.</td>
<td>FE-307</td>
<td>Testing of Footwear and Allied Materials</td>
<td>3</td>
<td>70 25 5</td>
<td></td>
</tr>
<tr>
<td>08.</td>
<td>FE-308</td>
<td>Testing of Footwear and Allied Materials Practical</td>
<td>2</td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>09.</td>
<td>FE-309</td>
<td>Computer Aided Design and Pattern Making</td>
<td>3</td>
<td>70 25 5</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>FE-310</td>
<td>Computer Aided Design and Pattern Making -Practical</td>
<td>2</td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>FE-311</td>
<td>Leather Products Technology</td>
<td>3</td>
<td>70 25 5</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>FE-312</td>
<td>Leather Products Technology Practical</td>
<td>4</td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>FE-313</td>
<td>Industrial and Production Engineering for Footwear Manufacture</td>
<td>3</td>
<td>70 25 5</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>FE-315</td>
<td>Managerial Economics</td>
<td>3</td>
<td>70 25 5</td>
<td></td>
</tr>
</tbody>
</table>

Total

A* = Course final examination; B* = In-course assessment; C* = Attendance
B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A* 70% B* 25% C* 5%</td>
<td>A* 60% B** 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>01.</td>
<td>FE-401</td>
<td>Manufacturing Technology of Footwear-IV</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>02.</td>
<td>FE-402</td>
<td>Manufacturing Technology of Footwear-IV Practical</td>
<td>4</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>03.</td>
<td>FE-403</td>
<td>Analytical Chemistry for Footwear Manufacture-II</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>04.</td>
<td>FE-405</td>
<td>Footwear Design and Pattern Making</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>05.</td>
<td>FE-406</td>
<td>Footwear Design and Pattern Making Practical</td>
<td>2</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>06.</td>
<td>FE-407</td>
<td>Polymer Science and Engineering</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>07.</td>
<td>FE-408</td>
<td>Polymer Science and Engineering Practical</td>
<td>2</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>08.</td>
<td>FE-409</td>
<td>Environmental Science and Pollution Control</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>09.</td>
<td>FE-410</td>
<td>Environmental Science and Pollution Control Practical</td>
<td>- 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>FE-411</td>
<td>Leather Technology-II</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>11.</td>
<td>FE-412</td>
<td>Leather Technology-II Practical</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>FE-413</td>
<td>Production Planning and Quality Control</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>13.</td>
<td>FE-415</td>
<td>Entrepreneurship and Business Development</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>14.</td>
<td>FE-416</td>
<td>Project Work and Seminar</td>
<td>- 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15.</td>
<td>FE-418</td>
<td>Industrial Training [2 Months]</td>
<td>- 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16.</td>
<td>FE-420</td>
<td>Course Viva</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>1500</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
Human Foot: Function of foot, Types of foot, Normal foot, Foot function, Biomechanics terminology, Foot dynamics- weight bearing foot, walking foot, running foot, gait analysis, foot motion, foot stances, foot support, Foot care and their relationship to footwear.

Foot Anatomy: Necessity of foot anatomy, Bones, Muscles, Ligament, Nerves and vessels, Joint, Arches, Skin etc. Foot anatomy of infants and children, Development of human foot from infants to adult. Characteristic features of infant, children and adult foot, Biometry of human foot, Details of foot parameters, Foot measurement-necessity, biometry, Foot parameters and measuring procedure.

Foot measurement: Introduction, Importance of foot measuring, measurement for Bespoke footwear, foot surveys, length and width of the foot, foot imprint, foot from different angle, simple device to measure various anatomical parameters of the foot, measurement of the foot plan, girth measurement, width numbering, foot ID, foot fitting, fitting- identification, multi-fittings, Brannock device for foot measurement, measuring with a tape.

Foot Troubles: Skin lesions- calluses, corns, plantar warts, ingrown nail, athletes foot, hypoallergenic feet, excessive foot perspiration, foot odor, diabetic foot, arch problems- flat foot, claw foot, arch strains, metatarsalgia, foot fatigue, burning feet, rigid feet, aching in calf, toe problems- hallux valgus, bunion, tailor’s bunion, hammer toe, children foot problems- in toeing, out toeing, pronation, crooked toes.

Footwear: Definition, history of footwear, foot gear, purpose of footwear, comfortable footwear, types of footwear- oxford, Derby, Court, Moccasin, Sandal, Casual, Boot, Sports, casual, mule, clogs, safety footwear, occupational footwear, sports shoe styles and fashion of footwear, feature of comfortable shoes, shoes and foot ills.

Parts of Shoe: Shoe section, Parts of upper- vamp, toe caps and wing caps, apron and vamp wings, tongues and tabs, peep toes, quarters, counters, appliqués- mudguards, saddle and bars, backstraps, fastenings, Lining- counter lining, quarter lining, backers, bottom- insole, welt, bottom filler, mid sole, runner, sole, heel, components- toe puff, stiffener, shank piece, sock, eyelets, ornamentations, foot and footwear care.

Footwear Materials: Various materials of footwear, suitability of leather as shoe upper, defects of leather, poromerics, synthetics, fabrics, foils, plastic, rubber etc. sole- PVC, PU, TPR, Insole- leather board, cellulose board, impregnated non-woven, fibre board, plastics, toe puff- solvent activated impregnated fabric, thermostatic filmic, stiffener- fully moulded leather and fibre board, thermostatic and solvent activated impregnated fabric, shank- wood, fibre board, steel, bamboo, heel- wood, plastic, ABS, EPDM, adhesive- solvent based, hot-melt, pressure sensitive adhesive, thread materials.

Tools and Machineries: Tools and equipments for footwear manufacture- knife, scissor, roughee, pincher, pricker etc, sewing machine- types, parts and function, stitch formation, threading system for different types of stitching machine, needle insertion, skiving machine- parts and function, splitting machine- parts and function, safety practice.
Cutting and Stitching: Definition of cutting, principle of cutting, hand cutting - tools, components, process, quality required for cutter, stitching - definition, types of stitch - lock stitch, chain stitch, decorative stitch, subsidiary stitching operation.

1. Martin , Shoben , Janet P. Ward - Pattern Cutting and Making Up
2. Swayam Siddha - The Art of Cutting Kid and Goat Skin
3. Swayam Siddha - The Art of Cutting a Buffalo Leather
4. Swayam Siddha - The Art of Cutting Corrected Grain Leather
5. Venkatappaiah B.- Introduction To The Modern Footwear Technology-
7. Korn J. (Editor) - Boot and Shoe Production
8. Thornton J. H.- Text Book of Footwear Manufacture
9. SATRA Bulletin
10. pencer Crookenden - K Shoes -The first 150 years 1842-1992
11. Ruth Thomson - Making Shoes
12. Swayam Siddha - Product Knowledge
13. Swayam Siddha - The Skill of Seam Reducing
14. Thornton J. H.-Text Book of Footwear Materials -

FE-102: MANUFACTURING TECHNOLOGY OF FOOTWEAR-I PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>Continuous assessment : 40, Course final examination 60</td>
</tr>
</tbody>
</table>

Cutting:

1. Foot measurement and foot impression-taking techniques.
2. Identification of bones nerves muscles from skeleton and model.
3. Handling and introduction of working tools of footwear.
4. Cutting exercise with paper.
5. Hand cutting practice with brown paper, pattern paper using template.
8. Parts, functions and setting up of different types of clicking machines.

Stitching:

1. Introduction to various sewing machines and their parts and functions.
2. Practice for the controlling of sewing machine.
3. Sewing exercise with paper without thread.
4. Practice of threading system for different types of sewing machines.
5. Sewing exercise with paper and thread.
6. Sewing exercise with synthetic material and thread.
7. Sewing exercise with leather and thread.
8. Skiving exercise with leather.
9. Practice of edge folding.
10. Practice of edge coloring.
11. Practice for different types of seams.
12. Practice for different types of binding.

FE-103: PHYSICAL CHEMISTRY

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5, Total Class: 45</td>
</tr>
</tbody>
</table>

Dilute solution: Colligative properties- lowering of vapor pressure, elevation of boiling point, depression of freezing point, osmotic pressure and osmosis, deduction of their chemical formula & molecular weight from Raoult's Law, their experimental determination.

Thermodynamics: Work, heat, energy, internal energy and enthalpy, some thermodynamic terms, first law of thermodynamics, reversible and irreversible processes, isothermal and adiabatic expansion of ideal gas, molar heat capacity at constant pressure and constant volume and their relation, second law of thermodynamics, spontaneous process, entropy, entropy changes for ideal gas, Carnot’s cycle, free energy and work function, Gibbs-Helmholtz's equation.

Surface chemistry: Adsorption, de-sorption and absorption, physical and chemical adsorption, types of adsorption isotherms, adsorption of gas by solid, adsorption of solid from solution, application adsorption.

Colloid: Classification, general methods of preparation and purification, general properties (Physical, colligative, kinetic, optical and electrical properties) of sol, protective action and application of colloid, emulsion, types and preparation of emulsion, emulsifier, stability of emulsions.

Chemical kinetics: Rate of reactions, order and molecularity, determination of order of reactions, temperature dependence of reaction rate, simple theories of reaction rate, energy of activation, collision theory of reaction rates, complex reactions: (i) reversible or opposing reactions, (ii) side reactions or parallel reactions, (iii) consecutive reactions.

pH and its determination: pH and buffer solutions, standard buffers, methods of determining the pH, accuracy of pH measurements, colourimetric determination of pH, universal indicators, potentiometric determination of pH, hydrogen electrode as pH indicating electrode, advantages and disadvantages of hydrogen electrode, glass electrode as pH indicating electrode, factors affecting pH measurements with the glass electrode, advantages and disadvantages of glass electrode, pH meters- potentiometric, portable pH meters.

References:

1. G. M. Barrow- Physical Chemistry.
2. W. J. Moore- Physical Chemistry.
5. S. Glasstone- Text Book of Physical Chemistry.
7. Robert A. Albery- Physical Chemistry.
8. Taylor and Taylor- Elementary Physical Chemistry.
11. Ira N. Levine- Physical Chemistry.
13. Palit- Elementary Physical Chemistry.
14. B. D. Khosla- Physical Chemistry.
15. N. Kundu & S. K. Jain- Physical Chemistry.
17. Joseph H. Noggle- Physical Chemistry.
Periodic classification:
Periodic classification of the elements, general survey of the elements including transition and rare earth elements, periodic nature as related to atomic structure, group properties, periodic nature of some important properties.

Oxidation and reduction reaction:
Classification of chemical reactions with special reference to oxidation and reductions, oxidation number and oxidation state, difference between oxidation number and valance, oxidizing agent and reducing agent, equations involving oxidation-reduction reactions.

Acid-Base concept:
Early concepts, Arrhenius concept, Bronsted-Lowry concept of acid and bases, Lewis acids and bases, acid and base strength, pH and pH scale, buffer solution and its mechanism, hard and soft acids and bases, acid base indicator.

Transition metal:
General chemistry of transition elements with reference to Chromium, Titanium, Zinc, Iron, Cadmium, Nickel, Cobalt, chemical natures and application with special reference to leather production.

Co-ordination chemistry:
Coordination or complex compounds, ligands or co-ordinating groups, coordination number, coordination sphere, chelate complexes, application of chelates, nomenclature of coordination compounds, isomerism-structural, geometrical, optical, optical isomerism in 6-coordinate complexes, Werner’s coordination theory, effective atomic number (EAN), limitation of EAN rules, valence bond theory (VBT) of structure of inorganic complex with simple examples, crystal field theory (CFT), application of crystal field theory color of transition metal complexes.

Chemical Bond:
Introduction, octet rule or rule of eight, ionic or electrovalent bond, covalent bond dipole moment, polarization of ions, Fajan’s rule, co-ordinate bond, metallic bond, hydrogen bond, Van der Waal’s forcers.

Inorganic Salts used for Tannings:
Chromium salts, its behavior in solution, oxidation rate, complex form of trivalent Ti.

References:
FE-107: ORGANIC CHEMISTRY

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Characteristic reactions and reaction mechanism of organic compounds: Types of organic reactions, fundamentals of organic reaction mechanism (Fission of bond, carbonium ion, carbanion), factors affecting organic reaction, attacking reagents and its role (electrophile and nucleophile), broad concept of the mechanism of substitution, elimination and addition reactions, reaction kinetics, energy requirements of organic reaction, mechanism of different reactions, nucleophilic substitution: SN_1 and SN_2 reactions, electrophilic substitution reaction, free radical substitution reaction, addition reaction: nucleophilic, electrophilic and free radical addition reaction, elimination reaction: E_1 and E_2 reactions.

Isomerism: Classification of isomerism, classification of stereoisomerisms, optical isomerism: plane polarized light, specific rotations, isomerism of substance containing one and two asymmetric carbon atoms, D.L. and R.S. configuration. Geometric isomerism: condition for geometric isomerism, determination of configuration of cis-trans isomerism.

Functional groups: Different functional groups of organic compounds, reactivity of functional groups, activation and de-activation of functional groups, positioning of functional groups and its importance on chemical and physical nature of organic compounds.

Monocyclic aromatic hydrocarbon: Benzene, structure of benzene, Kekule structure, nomenclature, stability of benzene ring, resonance energy, delocalization, aromaticity-conditions and theories, substitution of benzene ring, mechanism of aromatic substitution.

A. A thorough study of the following benzene derivatives: Structure, preparation, reactivity and uses of

i) Halogen compounds- fluoro and chloro- chemicals.

ii) Hydroxy compounds- phenol, β-naphthol, cresol, anthrasol.

iii) Nitro compounds-nitro benzene and its derivatives.

B. A through study of the following class of compounds:

i) Aldehydes and Ketones (Formaldehyde, acetaldehyde, glutaraldehyde, acetone).

ii) Aliphatic mono and di-carboxylic acids (Formic acid, acetic acid, acrylic acid, oxalic acid and succinic acid) and their important derivatives (Amide, ester, etc.).

Atmospheric Pollutants: Organic solvent vapours, isocyanate vapours, rubber fume.

Renewable Resources and green footwear: Upper and lining materials, sole units, insole boards, sewing threads and adhesives, packaging.

Safety audit checking: walking or working areas, storage lofts, second floor, etc, stairs and ladders, egress, occupational health and environmental control. Occupational noise exposure, hazardous materials, general environmental controls.
Management of emergency situations: basic first aid, spillage of chemicals, fires, machinery safety.

References:

5. Philip Mathews- Advanced Chemistry.
6. Amend, Mundy, Armold- General Organic and Biological Chemistry.

<table>
<thead>
<tr>
<th>FE-108: CHEMISTRY PRACTICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class per week</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Continuous assessment : 40 Course final examination 60

Inorganic:
1. Qualitative analysis of inorganic mixtures containing not less than four radicals including the interfering and insoluble radicals by classical or semi-micro methods; Preliminary and Confirmation tests for the following ions:
 a) Anions: Chloride, bromide, iodide, sulphide, sulphite, sulphate, carbonate, nitrate, nitrite, formates, oxalates, acetates.
 b) Cations: Lead, copper, zinc, cobalt, calcium, sodium, barium, magnesium, nickel, aluminium, chromium, manganese, iron, tin, arsenic, bismuth, potassium, ammonium, silver, mercury, cadmium, zirconium, titanium.
2. Volumetric analysis:
 (A) Acidimetry-Alkalimetry:
 i) Preparation of standard solutions of sodium thio-sulphate, sodium carbonate, oxalic acid.
 ii) Standardization of hydrochloric acid with standard sodium carbonate solution
 iii) Determination of degree of alkalinity.
 (B) Oxidation-Reduction Titration:
 i) Preparation and standardization of KMnO₄ using standard (COOH)₂ or sodium oxalate.
 ii) Determination of ferrous (II) ion using K₂Cr₂O₇ solution as primary standard titrant.
 (C) Iodometric Titration:
 i) Standardizing sodium thiosulphate solution using dichromate solution.
3. Organic Practical:

Qualitative analysis: Identification of organic compounds containing one functional group out of the following compounds: ethyl alcohol, isopropyl alcohol, phenol, acetone, acetaldehyde, formaldehyde, formic acid, acetic acid, oxalic acid, benzoic acid, aniline and nitrobenzene.

Analysis should include the following:

i) Physical examination

ii) Melting point and boiling point

iii) Detection of sulphur, nitrogen and halogen in an organic compound

iv) Solubility in the following solvents only-

 a) Water
 b) 5% solution on NaHCO₃/NaOH and HCl acid
 c) Conc. H₂SO₄
 d) Acetone
 e) Isopropyl alcohol
 f) Detection of different functional groups: -OH, >C=O, -CHO, -NH₂, -NO₂, -COOH.

v) Detection of different functional groups: -OH, >C=O, >C=O, -CHO, -NH₂, -COOH

4. Inorganic crystal Preparation Practical:

a) Inorganic Preparation: Alum, ferrous ammonium sulfate, potassium carbonate, basic chromium sulphate, potassium permanganate, chrome yellow.

References:

5. A. Jabbar Mian and M. Mahbubul Haque-Practical Chemistry.
6. N. Haque and M. Uddin -Practical Chemistry Introduction.
8. M. Latimer, E. Powell -A Laboratory Course of General Chemistry.
10. J. B. Yadav-Advanced Practical Physical Chemistry.
14. G. Svehla- Vogel's Qualitative Inorganic Analysis.
16. Hein, Best, Miner-Foundation of Chemistry in the Laboratory.
Elasticity: Rigid body, perfectly elastic body, plastic body, stress and strain, elastic limit and elastic fatigue, Hooke’s law and different elastic constants-moduli of elasticity, poisson’s ratio, determination of elastic constants factors affecting elasticity.

Surface Tension: Surface energy and surface tension, excess of pressure inside a spherical liquid drop, capillarity.

Transmission of heat: Conduction, convection and radiation, thermal conductivity of solids and liquids, coefficient of thermal conductivity, good and bad conductor of heat, determination of thermal conductivities of bad conductors- Lee’s method.

Radiation: Electromagnetic theory of radiation, black body radiation, emissive power and absorptive power, Kirchoff’s law of radiation and its experimental verification, displacement law, Stefan Boltzmann law, quantum theory of radiation, Plank’s law, Raleish-Jeans’s law, Planck’s radiation pyrometers, temperature of the sun, solar constant.

Static electricity: Electric charge, Coulomb’s law, electric field- calculation of the electric field strength due to a point charge, intensity of electric fields, electric dipole, electric flux and Gauss’s law, potential and field strength, equipotential surface, potential due to a point charge, capacitor and dielectrics, combination of capacitors in series and parallel, dielectrics and Gausses law, three electric vectors, energy storage in an electric field.

Current electricity: Electromotive force, electric current and current density, electric circuits, resistance, resistivity and conductivity, Ohm’s law, energy transfer in an electric circuit- Joules law. Combination of resistances, Kirchhoff's laws, Wheatstone bridge, varying current, growth and decay of currents in LR, CR and LCR circuits, magnetic field due to a current, Ampere’s law, magnetic induction for a solenoid, magnetic induction near a long wire, Ampere’s circuital law, electromagnetic induction-Faraday’s laws, Lenz’s law, Leus’s law and the law of conservation of energy, Fleming's right hand rule, eddy current, self and mutual induction, unit of inductance. Alternating currents- concept of r.m.s. and average values of alternating current and voltage, A-C circuits containing LR, CR and LCR in series, calculation of expression for current and power, power factor, resonance.
Modern physics: The atomic structures, atom models, orbital energy, radioactivity, laws of radioactive disintegration, half life and mean life, laws of successive disintegration, alpha, beta, gamma and X-ray and their applications, photoelectric effect, Compton effect, Plank’s radiation formula, Einstein’s photon theory.

FE-110: PHYSICS PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Continuous assessment : 40 Course final examination 60</td>
</tr>
</tbody>
</table>

1. Determination of the radius of curvature of a lens by Newton’s ring method (wavelength of light to be given).
2. Determination of the refractive index of a material of a given prism by a spectrometer.
3. Determination of the grating constant of a plate diffraction grating.
4. Determination of the specific sugar solution (at six different concentrations) with the help of a polarimeter.
5. Determination of the value of M and H by magnetometer.
6. Verification of the laws of combination resistance by P.O. Box (at least three different resistance, are to be used).
7. Determination of the resistance of a galvanometer by half deflection method.
8. Determination of the figure of merit (current sensitivity) of a galvanometer.
10. Verification of Ohm’s law.
11. Determination of the value of low resistance by the method of fall of potential.
12. Determination of the electrochemical equivalent (ECE) of copper-by copper voltameter.
15. Graphical representation of the variation of the elongation of the given wire with load and determination of the Young’s modulus of the material of the wire by Searle’s apparatus.
17. Determination of the value of “g” by Kater’s reversible pendulum.
18. Determination of the thermal conductivity of rubber.
19. Determination of the thermal conductivity of bad conductor by Lee’s method.
20. Determination of the specific heat of a liquid by the method of cooling.
21. Determination of the velocity of sound at N.T.P by resonance column.
22. Determination of the frequency of a tuning fork by Meld’s experiment (use either transverse or longitudinal arrangement).

References:

1. C. L. Arora -B.Sc. Physics, Vol-I & II.
2. Charles Kittel/Herbert Kroemer -Thermal Physics.
3. Resnick/Halliday/Krane-Physics, Vol I & II.
FE-112: ENGINEERING DRAWING

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Continuous assessment: 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Course final examination: 60</td>
</tr>
</tbody>
</table>

Introduction, Drawing equipment and the use of instruments; Basic drafting techniques and standards; Geometrical curves including plane curves; Cycloid, Hypocycloid, and the Involutes. Intersections at various positions of geometrical bodies such as prisms, pyramids, cylinders and cones. Development of surfaces of prisms. Pyramids, cylinders, cones, drum, gear-box guard, knife-guard, coating machine, hand spray, spray coater, roller coater, etc. Freehand sketching of machine and engine components; Locking arrangements; Foundation bolts; Stuffing box; Shaft couplings; Foot-step bearing; Pulleys; Engine connecting rod. Concept of working drawing of component parts of machines and engines; Size, description, dimensions, and specifications; limit dimensioning and geometric tolerance; limits; Fits and tolerances, conventional symbols. Sectioning of machine and engine components; Orthographic projections and standard practices Isometric views with particular reference to piping and ducting. Layout drawing of a modern tannery.

FE-113: COMPUTER AND INFORMATION ENGINEERING

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5, Total Class: 45</td>
</tr>
</tbody>
</table>

Introduction to computer: History and development of computer, types of computers, Scope of computer, impact of computers on society and technology, working principle of a computer system, single and multi-user systems.

Hardware: Organization and architecture, motherboards & microprocessors, memory units: primary memory, secondary memory, Input/Output device, other peripheral devices like pointing devices, display devices, printing devices etc

System software: Operating system concepts, importance, components and basic functions of DOS, Windows and LINUX operating systems.

Application software: Desktop publishing: Desktop publishing includes effective page layout techniques, ways to add graphics, manipulating text and print. Word processing: Word processing software includes creating documents, printing documents, changing the appearance of text or lines of text, changing page formats and other writing tools. Spreadsheets: Spreadsheets software includes basic concepts of spreadsheets, making basic worksheets entries, entering formulas to perform calculations, altering column options, working with ranges versus all of the worksheets, basic print options, file commands and basic graphing. Database: Database management system, database concepts, creating a
database file structure, entering and editing data, displaying, organizing and printing data, modifying the data structure, creating queries and building and printing custom reports or forms.

Maintenance: Power supply stability, grounding, effects of surge, sag current and its protection, classification of stabilizer and UPS, effect of static charge on computer devices, handling of computers cards and chips, computer viruses and protections, operating system setting, disk-partitioning, software troubleshooting and maintenance.

Computer networks: Concepts of network, different types of network, study of LAN concepts and operation, hardware and software for networks, data transmission, network architectures, protocols and standards are examined, as well as install and uninstall network components and peripheral devices, study of connectivity between LAN and wide area networks.

Internet: Worldwide web including navigating the internet, task-oriented skill sessions on logging on, Internet services: Telnet, FTP, e-mail, www, internet, Intranet etc.

Mobile and wireless Communication: 1G, 2G, 2.5G and 3G mobile, GSM and CDMA, bluetooth, WiFi Max etc.

References:
1. S. Frence - Computer Science.
2. Warford - Computer Science.
3. Peter Norton – An Introduction to Computer Science
5. Clive Finkelstein – An Introduction to Information Engineering
6. Ian Macdonald - Information Engineering
7. James Martin - Information Engineering: Introduction

FE-114: COMPUTER AND INFORMATION ENGINEERING PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Continuous assessment : 40 Course final examination 60</td>
</tr>
</tbody>
</table>

Operating system: Students will learn how to operate a computer in two basic environments- dos and windows and to install DOS, windows operating system. Word processor: students will learn to use a popular word processor to create a camera-ready test file complete with figures, columns and tables. Spread sheet: students will learn how to use a popular spread sheet to maintain a minor book keeping, statistical and graphical analysis off data. Database: students will learn how to design a database structure/table. Computers assemble: students will assemble a computer. Internet: e-mail access, browsing, downloading.
FE-115: MATHEMATICS-I

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5 Total Class: 45</td>
</tr>
</tbody>
</table>

Algebra: Determinant, matrix, inequalities.

Vector algebra and vector calculus: Introduction, scalar and vector products, solutions of vector equations, applications of vectors in geometry, vector calculus: vector function of scalar variables, differentiation of vector functions: grad, div and curl of functions, line, surface and volume integrals: green, gauss and stokes theorems-verification and applications.

Differential calculus: Functions of real variable and their graphs, limit, continuity and derivative, physical meaning of derivative of a function, evaluation of indeterminate forms of limit, L’ Hospitals theorem, higher derivatives, Leibnitz theorem, Role’s theorem, mean value theorem, Taylor’s theorem, Taylor’s and Maclaurin’s series, maximum and minimum values of functions, functions of two and three variables, partial and total derivatives, Euler’s theorem, concavity and convexity of a function.

Integral calculus: Definition of integration, integration by the method of substitution, integration by parts, standard integrals, method of successive reduction, definite integral, its properties and use in summing series, Walli’s formulae, improper integral, beta function and gamma function, area under a plane curve in Cartesian and polar coordinates, area of the region enclosed by two curves in Cartesian and polar coordinates, Trapezoidal rule, Simpson’s rule, area, lengths of curves in Cartesian and polar coordinates, parametric and pedal equation, intrinsic equation, volumes of solids of revolution, volume of hollow solids of revolution by shell method, area of surface of revolution.

References:
7. Finney and Thomas-Calculus and Analytical Geometry.
10. R. A. Sardar -Differential Calculus.
E-117: BUSINESS AND COMMUNICATIVE ENGLISH FOR ENGINEERS

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Introduction to English grammar and its usage: Basic English Grammar and its standard usage.

English language: Its function as a primary means of communication to the technologists in writing, speaking, listening and reading.

Writing: Planning – technique, style and form, paragraph headings context, vocabularies writing for specific purposes.

Technical writing: Technical and industrial report including various types of technical reports with emphasis on preparation, data collection and research, organization style format graphics technical descriptions and report writing. Proposal for new equipment increasing production, description of visits

Business / commercial Writing: Job application, Business Letters

Speaking and Listening: Effective communication between speaker and listener through presentation. Use of visual aids.

Reading and Understanding: Technical and scientific books and journals.

Style of letters: Full blocked, Semi-blocked, Blocked

Parts of writing official letters: Techniques of writing (Heading, Reference, date, inside address, topic, greetings, complementary closing, Signature, Supplements.

Types of format documentation (in English)

- Application with Curriculum Vitae (C.V)
- Appointment letter
- Joining Report
- Letter of enquiry, orders, cancellation
- Letter of compensation and complaint
- Letter to the print and Electronic media
- Application for opening a Bank Account
- Application for Bank Solvency Certificate
- Application for Bank Loan
- Office note
- Memorandum
- Notice Writing

Listening: Phonetics and phonology, Sound practice.

References:
UNIVERSITY OF DHAKA
BANGLADESH

DETAILED GUIDE LINES AND SYLLABUS
FOR
B.Sc. IN FOOTWEAR ENGINEERING

(FOUR YEARS COURSE)

SECOND YEAR

Approved by Academic Council
University of Dhaka

Institute of Leather Engineering and Technology
University of Dhaka, Hazaribagh, Dhaka-1209.
RULES AND REGULATIONS APPLICABLE FOR
INSTITUTE OF LEATHER ENGINEERING AND TECHNOLOGY
DEPARTMENT : FOOTWEAR ENGINEERING

B. ACADEMIC RULES

1. The Institute of Leather Engineering and Technology (ILET), Hazaribagh, Dhaka shall be deemed to
 be an institute of the University of Dhaka.
2. The degree to be awarded by the University of Dhaka shall be designated as B. Sc. in Footwear
 Engineering.
3. The Courses for the B. Sc. in Footwear Engineering shall extend over four academic years.
4. The medium of instruction and examination shall be in English.
5. Every year there will be an admission test for new intakes. The rules and regulations and other
 necessary works for the admission purpose will be performed by the central admission committee of
 the University.
6. Candidates for admission to the first year B. Sc. in Footwear Engineering shall be required to have
 passed the Higher Secondary Certificate in Science with Physics, Chemistry and Mathematics or its
 equivalent from a recognized Board or Institution. Foreign students with requisite qualification may
 be admitted with the approval of the University of Dhaka.
7. Admission to the first year B. Sc. in Footwear Engineering programme shall be based on the results
 of S.S.C. and H.S.C. or its equivalent examinations and the admission test to be conducted based on
 current rules by the Central Admission Committee.
8. The detail syllabus for degree of Footwear Engineering shall be approved by Academic Council of
 the University of Dhaka.
9. An Examination Committee for each year consisting of 4 (four) members of which 3 (three) shall be
 internal and 1 (one) from other departments of the Institute or the university or research organization
 shall be constituted by the departmental academic committee. Any full time teacher of the concerned
 department of the institute shall be the chairman of the Examination Committee.
10. There shall be a Departmental Academic Committee consisting of all the full-time teaching staff to
 help academic matters.
11. Every year before the commencement of Academic session the list of part time teachers (if required)
 shall be prepared course wise and must be approved by the dean of the concern Faculty of Dhaka
 University. Dean will have the right to modify the list with the consultation with the concern head of
 the department and the Director of the institute.
12. The question paper setters and the examiners will be selected by the Examination Committee from a
 panel approved by the University.
24. The question papers shall be moderated by the Examination Committee.

25. No candidate shall be eligible for degree of B. Sc. in Footwear Engineering unless he or she has undergone the approved courses of study for a minimum period of four academic years and maximum of six academic years.

26. There shall be 15, 1-class hour lectures for 1 credit of theory classes. There shall be 30 hour lectures for 1 credit of Practical classes. Each of the class duration is 50 minutes.

27. No student shall be allowed to study any other degree programme during his/her study in Institute of Leather Engineering and Technology.

B. CURRICULUM AND EXAMINATION RULES

17. The subjects to be studied and the scheme of examinations for B. Sc. in Footwear Engineering courses are given in Annexure-A.

18. There shall be a final examination at the end of each academic year to be conducted by the University of Dhaka.

19. Two examiners, of whom one will be the course teacher and the others, shall be from other departments of the Institute or University or research organization. The average of two will be taken as final. In case of the difference of more than 20% marks between the two examiners, the script/scripts will be evaluated by a third examiner appointed by the Examination Committee from the approved panel and the average of nearest two marks will be taken as final. In the case of equal difference between the marks of three examiners the middle marks will be taken as final.

21. Final practical examinations will be conducted jointly by Four examiners, 3 (three) internal and 1 (one) external appointed by the examination committee.

22. Grades and grade points will be awarded on the basis of marks obtained in the written, oral or practical examinations and/or laboratory performance according to the following scheme:

<table>
<thead>
<tr>
<th>Marks Obtained (%)</th>
<th>Grade</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-100</td>
<td>A+</td>
<td>4.0</td>
</tr>
<tr>
<td>75-79</td>
<td>A</td>
<td>3.75</td>
</tr>
<tr>
<td>70-74</td>
<td>A-</td>
<td>3.50</td>
</tr>
<tr>
<td>65-69</td>
<td>B+</td>
<td>3.25</td>
</tr>
<tr>
<td>60-64</td>
<td>B</td>
<td>3.00</td>
</tr>
<tr>
<td>55-59</td>
<td>B-</td>
<td>2.75</td>
</tr>
<tr>
<td>50-54</td>
<td>C+</td>
<td>2.50</td>
</tr>
<tr>
<td>45-49</td>
<td>C</td>
<td>2.25</td>
</tr>
<tr>
<td>Marks Obtained (%)</td>
<td>Grade</td>
<td>Grade Point</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td><40</td>
<td>F</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Incomplete</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Withdrawn</td>
</tr>
</tbody>
</table>

A student obtaining ‘D’ or higher grade will be counted as credits earned by him/her. A student obtaining ‘F’ grade will not be counted towards his earned credits.

The GPA (grade point average) will be calculated according to the following formula:

\[
\text{GPA} = \frac{\sum (\text{Grade points in a course} \times \text{Credits for the course})}{\text{Total credits taken}}
\]

CGPA = Cumulative GPA for different years.

22. The total performance of a student in a given course is based on continuous assessment and course final examinations.

(i) For theory courses the assessment is made through in-course assessment, and final examinations;

(ii) The assessment of laboratory and/or field courses will be made through observation of the student at work, viva-voce, assignments and evaluation of practical reports.

An examination committee for each year shall be constituted at the beginning of the session.

The distribution of marks for a course will be as follows:

(a) Theory courses:

In-course assessment: 30% of total marks shall be taken as in-course assessment. 5% marks will be awarded on the basis of attendance as follows:

- 90% and above: 5%
- 85% to less than 90%: 4%
- 80% to less than 85%: 3%
- 75% to less than 80%: 2%
- 60% to less than 75%: 1%
- Less than 60%: 0 (Zero)

(ii) Course final examination: 70% of total marks

(iii) Continuous assessment: 40% of total marks

for practical courses
(b) In-course assessment for theory courses: In-course assessment will be done by taking class tests.

 (i) Maximum duration of in-course tests will be one class hour.

 (ii) Questions for in-course tests may preferably be of multiple choice (MCQ) type. Students may also be evaluated using short questions as decided by the course teacher.

 (iii) At least one test for 2 credits hour courses and two tests for 3 or 4 credit hour courses will be taken.

 (iv) Course teachers must announce results within 4 weeks of holding the examination.

 (v) The course teacher will show the assessed in-course scripts to the students.

 (vi) Marks for in-course assessment must be submitted by the course teacher to the Chairman of the Examination Committee and Controller of Examinations before holding the final examination.

(c) Continuous assessment for Practical courses: Continuous assessment will be done on the basis of class performance, report writing and class attendance.

(d) Year-final examination (Theory & Practical courses):

 (i) Student having attendance 75% or more (Collegiate) are eligible to appear in the final examination.

 (ii) Students having attendance 60-74% are eligible for sitting in the final examination on payment of fees as decided by the University.

 (iii) Student having attendance less than 60% are not allowed to sit in the final examination.

 (iv) The year final examination will be conducted centrally by Controller of examinations as existing system.

(v) The duration of theoretical examinations will be follows:

<table>
<thead>
<tr>
<th>Credit</th>
<th>Duration of theory examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 credit theory course</td>
<td>4 hours</td>
</tr>
<tr>
<td>3 credit theory course</td>
<td>3 hours</td>
</tr>
<tr>
<td>2 credit theory course</td>
<td>2.5 hours</td>
</tr>
</tbody>
</table>
(vi) Duration of practical examinations will be from 4-6 hours irrespective of credit hours.

(vii) For final examinations, there will be two examiners: first examiner will be one of the course teachers and the second examiner will be other departments of the Institute or University or Research organization. Evaluation will be made under the existing rule.

(viii) Marks for final examination will be evaluated by broad and short answer questions. Practice of giving options should be avoided as far as possible.

23. A student has to take the required courses for a particular year, appear at the annual examination and score a minimum specified GPA/CGPA to be promoted to the next year.

Promotion to the next year will be given if a student scores minimum GPA/CGPA as follows:

<table>
<thead>
<tr>
<th>Year Span</th>
<th>GPA/CGPA</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st to 2nd</td>
<td>2.00</td>
<td>(D)</td>
</tr>
<tr>
<td>2nd to 3rd</td>
<td>2.25</td>
<td>(C)</td>
</tr>
<tr>
<td>3rd to 4th</td>
<td>2.25</td>
<td>(C)</td>
</tr>
</tbody>
</table>

24. The requirements for the award of the Bachelor of Engineering degree are as follows of the Department:

(i) Completion of the courses for the minimum required credits in a maximum period of six academic years;
(ii) Appearing at the final examination in all the required courses;
(iii) Scoring a CGPA of 2.5, after considering the grades of improvement Examinations.

25. A student must complete his/her studies for a Bachelor’s Degree within a maximum period of six academic years.

26. Improvement/retake will be followed by:

(i) If students obtain a grade C+ or lower in a course in any year, he/she will be allowed to repeat the term-final examination only once with the following batch for the purpose of grade improvement, but he/she will not be eligible to get a grade better than ‘B+’ in such a course. A student failing to improve his/her grade in a course can retain the earlier grade.
(ii) Grade improvement will not be allowed in those courses in which a student obtains grade better than ‘C+’.
(iii) A student will be allowed to repeat a maximum of 20 credits in four years B.Sc. Program for grade improvement purpose.
(iv) Improvement Examination will be taken only for term-final test. No improvement examination will be taken for in-course, practical course, field work, assignment and oral presentation.

27. (i) A course in which a student has obtained ‘D’ or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained ‘F’ grade will not be counted towards his earned credits.

(ii) A student who obtains ‘F’ grade in a course will be allowed to improve the grade two times with any following batches with a condition that he/she has to complete the Bachelor of Engineering Program within period of 6(six) academic years from the date of first admission.

(iii) ‘F’ grade will not be counted for GPA calculation. But will stay permanently on grade sheet and Transcript. When a student will repeat a course in which he/she previously obtained ‘F’ grade, he/she will not be eligible to get grade better than ‘B+’ (grade point 3.25) in such a course.

28. Readmission will be followed by:

(i) A student may seek re-admission provided he/she has at least 30% attendance in the present year and may continue studies as a regular student.

(ii) On re-admission grade earned earlier by a student in the class of re-admission shall in general cease to exist and the student has to retake all courses and examination but in case if they do not get the opportunity to repeat the courses due to late admission, marks of in-course assessment and laboratory performance assessment in the previous year may be retained by the students.

29. Drop out will be followed by:

A student failing to earn the yearly GPA for promotion from one year to next year after taking improvement / readmission in any year shall be dropped out of the program.

30. Dean’s Award will be followed by:

As a recognition of excellent performance, the names of students obtaining an average CGPA of 3.75 or above in an academic year without appearing any improvement examination may be Published in the list of Dean’s award of the Faculty.

31. The failed candidates may seek readmission into the concerned classes on payment of usual fees except university registration fee or may appear in the concerned examination irregular candidates provided they have passed in all practical subjects on payment of examination and center fees as fixed by the University. The marks obtained by the irregular candidates in the practical examinations; in-course
assessment and the project work (if applicable) in the earlier session shall be counted in deciding the results of their examinations.

32. The University may from time to time revise, amend or change rules and regulations and scheme of examinations and syllabus. In the case of students already undergoing the course, the changes will take effect from the beginning of the following academic year after the changes are introduced and shall cover the part of the courses that remain to be completed.

33. In the case of any dispute in interpretation of the rules and regulations regarding the degree programme of B.Sc. in Footwear Engineering, the decision of Academic Council of the University of Dhaka shall be final.
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A* 70% B* 25% C* 5%</td>
<td>A* 60% B** 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A* 70% B* 25% C* 5%</td>
<td>A* 60% B** 40%</td>
</tr>
<tr>
<td>01.</td>
<td>FE-101</td>
<td>Manufacturing Technology of Footwear-I</td>
<td>3</td>
<td>70 25 5</td>
<td>-</td>
</tr>
<tr>
<td>02.</td>
<td>FE-102</td>
<td>Manufacturing Technology of Footwear-I Practical</td>
<td>4</td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>03.</td>
<td>FE-103</td>
<td>Physical Chemistry</td>
<td>3</td>
<td>70 25 5</td>
<td>-</td>
</tr>
<tr>
<td>04.</td>
<td>FE-105</td>
<td>Inorganic Chemistry</td>
<td>3</td>
<td>70 25 5</td>
<td>-</td>
</tr>
<tr>
<td>05.</td>
<td>FE-107</td>
<td>Organic Chemistry</td>
<td>3</td>
<td>70 25 5</td>
<td>-</td>
</tr>
<tr>
<td>06.</td>
<td>FE-108</td>
<td>Chemistry Practical</td>
<td></td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>07.</td>
<td>FE-109</td>
<td>Physics</td>
<td>3</td>
<td>70 25 5</td>
<td>-</td>
</tr>
<tr>
<td>08.</td>
<td>FE-110</td>
<td>Physics Practical</td>
<td></td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>09.</td>
<td>FE-112</td>
<td>Engineering Drawing</td>
<td></td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>FE-113</td>
<td>Computer and Information Engineering</td>
<td>3</td>
<td>70 25 5</td>
<td>-</td>
</tr>
<tr>
<td>11.</td>
<td>FE-114</td>
<td>Computer and Information Engineering-Practical</td>
<td>2</td>
<td>60 40</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>FE-115</td>
<td>Mathematics-I</td>
<td>3</td>
<td>70 25 5</td>
<td>-</td>
</tr>
<tr>
<td>13.</td>
<td>FE-117</td>
<td>Business and Communicative English for Engineers</td>
<td>3</td>
<td>70 25 5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance, B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A*</td>
<td>B*</td>
<td>C*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70%</td>
<td>25%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>FE-201</td>
<td>Manufacturing Technology of Footwear-II</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>02.</td>
<td>FE-202</td>
<td>Manufacturing Technology of Footwear-II Practical</td>
<td>4</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>03.</td>
<td>FE-203</td>
<td>Applied Chemistry and Chemical Engineering</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>04.</td>
<td>FE-204</td>
<td>Applied Chemistry and Chemical Engineering Practical</td>
<td>4</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>05.</td>
<td>FE-205</td>
<td>Materials Science & Technology</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>06.</td>
<td>FE-207</td>
<td>Mathematics-II</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>07.</td>
<td>FE-209</td>
<td>Statistics</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>08.</td>
<td>FE-211</td>
<td>Mechanical Engineering for Footwear Manufacture</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>09.</td>
<td>FE-212</td>
<td>Mechanical Engineering for Footwear Manufacture Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>FE-213</td>
<td>Electrical and Electronic Engineering</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>11.</td>
<td>FE-214</td>
<td>Electrical and Electronic Engineering Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>FE-215</td>
<td>Industrial Management for Footwear Manufacture</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>13.</td>
<td>FE-216</td>
<td>Computer Graphics Design</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>24</td>
<td>14</td>
<td>560</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance; B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
THIRD YEAR

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Course code</td>
<td>Course Title</td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>01.</td>
<td>FE-301</td>
<td>Manufacturing Technology of Footwear-III</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>02.</td>
<td>FE-302</td>
<td>Manufacturing Technology of Footwear-III Practical</td>
<td>4</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>03.</td>
<td>FE-303</td>
<td>Analytical Chemistry for Footwear Manufacture-I</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>04.</td>
<td>FE-304</td>
<td>Analytical Chemistry for Footwear Manufacture Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>05.</td>
<td>FE-305</td>
<td>Leather Technology-I</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>06.</td>
<td>FE-306</td>
<td>Leather Technology-I Practical</td>
<td>-</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>07.</td>
<td>FE-307</td>
<td>Testing of Footwear and Allied Materials</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>08.</td>
<td>FE-308</td>
<td>Testing of Footwear and Allied Materials Practical</td>
<td>-</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>09.</td>
<td>FE-309</td>
<td>Computer Aided Design and Pattern Making</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>10.</td>
<td>FE-310</td>
<td>Computer Aided Design and Pattern Making - Practical</td>
<td>-</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>11.</td>
<td>FE-311</td>
<td>Leather Products Technology</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>12.</td>
<td>FE-312</td>
<td>Leather Products Technology Practical</td>
<td>4</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>13.</td>
<td>FE-313</td>
<td>Industrial and Production Engineering for Footwear Manufacture</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>14.</td>
<td>FE-315</td>
<td>Managerial Economics</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>24</td>
<td>560</td>
<td>200</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance; B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class
For Practical courses 1 Credit = 30 class
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory A* 70% B* 25% C* 5% A* 60% B** 40%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>FE-401</td>
<td>Manufacturing Technology of Footwear-IV</td>
<td>3</td>
<td>-</td>
<td>70 25 5 0 100</td>
</tr>
<tr>
<td>02.</td>
<td>FE-402</td>
<td>Manufacturing Technology of Footwear-IV Practical</td>
<td>4</td>
<td>60 40 100</td>
<td></td>
</tr>
<tr>
<td>03.</td>
<td>FE-403</td>
<td>Analytical Chemistry for Footwear Manufacture-II</td>
<td>3</td>
<td>70 25 5</td>
<td>100</td>
</tr>
<tr>
<td>04.</td>
<td>FE-405</td>
<td>Footwear Design and Pattern Making</td>
<td>3</td>
<td>-</td>
<td>70 25 5 0 100</td>
</tr>
<tr>
<td>05.</td>
<td>FE-406</td>
<td>Footwear Design and Pattern Making Practical</td>
<td>2</td>
<td>60 40 100</td>
<td></td>
</tr>
<tr>
<td>06.</td>
<td>FE-407</td>
<td>Polymer Science and Engineering</td>
<td>3</td>
<td>-</td>
<td>70 25 5 0 100</td>
</tr>
<tr>
<td>07.</td>
<td>FE-408</td>
<td>Polymer Science and Engineering Practical</td>
<td>2</td>
<td>60 40 100</td>
<td></td>
</tr>
<tr>
<td>08.</td>
<td>FE-409</td>
<td>Environmental Science and Pollution Control</td>
<td>3</td>
<td>-</td>
<td>70 25 5 0 100</td>
</tr>
<tr>
<td>09.</td>
<td>FE-410</td>
<td>Environmental Science and Pollution Control Practical</td>
<td>-</td>
<td>2</td>
<td>60 40 100</td>
</tr>
<tr>
<td>10.</td>
<td>FE-411</td>
<td>Leather Technology-II</td>
<td>3</td>
<td>-</td>
<td>70 25 5 0 100</td>
</tr>
<tr>
<td>11.</td>
<td>FE-412</td>
<td>Leather Technology-II Practical</td>
<td>-</td>
<td>4</td>
<td>60 40 100</td>
</tr>
<tr>
<td>12.</td>
<td>FE-413</td>
<td>Production Planning and Quality Control</td>
<td>3</td>
<td>-</td>
<td>70 25 5 0 100</td>
</tr>
<tr>
<td>13.</td>
<td>FE-415</td>
<td>Entrepreneurship and Business Development</td>
<td>3</td>
<td>70 25 5</td>
<td>100</td>
</tr>
<tr>
<td>14.</td>
<td>FE-416</td>
<td>Project Work and Seminar</td>
<td>-</td>
<td>2</td>
<td>75 25 100 00</td>
</tr>
<tr>
<td>15.</td>
<td>FE-418</td>
<td>Industrial Training [2 Months]</td>
<td>-</td>
<td>2</td>
<td>50 40 100 50</td>
</tr>
<tr>
<td>16.</td>
<td>FE-420</td>
<td>Course Viva</td>
<td>-</td>
<td>2</td>
<td>50 40 100 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td>560 200 40 500 200 1500</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance; B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
Shoe sizing and fitting: Definition, principle of shoe sizing, length size, shoe size classification- UK shoe sizing, Parish point, American shoe sizing, centimeter scale, Mondo point, comparison among different shoe sizing systems, conversion of sizes from one scale to another. Standardize shoe sizes, inconsistency of shoe sizing, fitting- definition and principle, purpose of shoe fitting, different fitting system, advance principle of shoe fitting, fitting of infant shoes, fitting of children shoes, difficulties in perfect shoe fitting, factor and procedures of shoe fitting, shoe fitting checking procedures, shoe fitting devices, fitting problem feet, shoe adjustment in fitting, related maths.

Last: Definition, its importance, difference between last and feet, classification of last, measurement of last, symmetric lasts, custom made last, after care of last / storage of last, raw materials used for last manufacturing, last styling and model making, last milling and manufacturing – wooden and synthetic last, last co-ordination, last features for different styles of footwear.

Pattern Making: Definition, types of pattern, sequence of pattern making, tools and equipment for pattern making, mean form, standard form, sectional pattern, tooling up, 3D-2D-3D conversion. Grading.

Cutting: Assessment of materials, cutting- definition, tightness and stretchiness of leather, parts of leather, grading and sorting leather, upper materials used in footwear manufacturing, area measurement, area discrepancy, cuttability of leather, net coefficient of leather, true price, grading system of leather, table run, instruction or job sheet, press cutting, clicking press knives, environmental factors, storage of knives, modern clicking press, advantages of various types of cutting machine, press cutting process, safety method of clicking, comparison between hand cutting and machine cutting, sorting of leather for cutting, variation in upper materials and their effects on clicking, cutting principle of leather and synthetic materials, related maths.

Skiving and Splitting: Skiving- definition, purpose of skiving, procedure, hallow skive, types of skiving - raw edges, burnished edge, folded edge, underlay edge, close seam, lasted margin, Splitting- definition, purpose, procedure, safety practice.

Closing: Definition, preparatory operation- identification making, notch marking, sizing marking, stitch marking, lining stamping, punching/perforation, gimping, blocking, performing, reinforcing, embossing, crimping, edge coloring, burnishing, folding, binding, top line treatment, eyeleting, punching, edge burnishing, edge binding, upper assembling, lining assembling, upper and lining attaching.

Lasting: Definition, objects of lasting, principal of lasting, preparatory operations, methods of lasting, hand lasting procedures.

Shoe construction: Definition, types, purpose, cement construction, construction of sandal, court shoe and oxford shoe.

References:
1. Martin, Shoben, Janet P. Ward - Pattern Cutting and Making Up
2. Swayam Siddha - The Art of Cutting Kid and Goat Skin
3. Swayam Siddha - The Art of Cutting a Buffalo Leather
4. Swayam Siddha - The Art of Cutting Corrected Grain Leather
5. Venkatappaiah B.- Introduction To The Modern Footwear Technology-
7. Korn J. (Editor) - Boot and Shoe Production
8. Thornton J. H.- Text Book of Footwear Manufacture
9. SATRA Bulletin
10. Spencer Crookenden - K Shoes -The first 150 years 1842-1992
11. Ruth Thomson - Making Shoes
12. Swayam Siddha - Product Knowledge
13. Swayam Siddha - The Skill of Seam Reducing
14. Thornton J. H.-Text Book of Footwear Materials -

FE-202: MANUFACTURING TECHNOLOGY OF FOOTWEAR-II PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>Continuous assessment : 40 Course final examination 60</td>
</tr>
</tbody>
</table>

12. Mean form-making technique, dead form, standard making.
14. Preparation of different types of quarter, counter, vamp, facing, toecap, collar, vamp apron, wing cap etc. for mens’ Oxford/Derby/Brogue shoe.
15. Preparation of different types of quarter, counter, vamp, facing, toe cap, collar, vamp apron, wing cap for Boys’ Oxford/Derby shoe/Court Shoe.
17. Attachment of Straps of sole.
19. Study the method of grading of upper and practical grading of upper leather.
20. Theoretical area drawing.
22. Practical manipulation following the principles of cutting.
23. Prepare cutters performance sheets.
Oils, Fats and waxes:
Oils and its classification, animal fats, characteristics and uses of fatty oils and fats, waxes and its classification, saponification value, acid value, iodine value of oils, fats and waxes, extraction and refining method of vegetable oils, rancidity of oils, hydrogenation of vegetable oils.

Soaps and Detergents:
Cleansing mechanism of soap, raw materials of soap manufacturing, Batch-kettle process and modern process of soap manufacture, detergent and its classification, manufacture of ABS detergent, glycerine and its manufacture.

Glue, Gelatin and Adhesives:
Introduction, characteristics and uses of glue and gelatin, adhesives and its uses, gelatin manufacture and by products, animal glue.

Cosmetics:
Introduction, types of cosmetics, hair products (shampoo, hair straightener), face powder, cleansing cream and lotion, lipstick, eye makeup, preshave, shaving & aftershave preparation.

Material balance:
Fundamental of material balance: Types of balances, steady state and unsteady state operations, principle and procedure of material balance, material balance calculations of problems without chemical reactions. Material balance on reactive system: Stoichiometry, stoichiometric equation, stoichiometric coefficient, stoichiometric ratio, stoichiometric proportion, limiting and excess reactant, recycle, purge and by-pass, mass balance involving chemical reactions.

Energy balance:
Principles of energy conversion and conservation, form of energy, total energy balance, heat of reaction, heat of combustion, heat of formation, theoretical and excess air of combustion, energy balance calculation without and with chemical processes.

Absorption:
Principle of absorption, operational and constructional features of packed absorption tower, mass balance equation of packed absorption tower, tower packings and their characteristics.

Refrigeration:
Introduction, vapor-compression refrigeration cycle, absorption refrigeration cycle, refrigerants, refrigerants classification, refrigerants properties and uses.

Fluid mechanics: Introduction, fluid flow and its measurement, laminar flow, turbulent flow, Reynold’s number, Euler’s differential equation of hydrostatic pressure, basic equation of hydrostatic equilibrium and its application, fluid machinery- pumps.
References:

1. W. J. Moore- Physical Chemistry.
5. P. W. Atkins- Physical Chemistry.
7. McCabe and Smith- Introduction to unit operation
9. Fogler- Element of chemical reaction engineering

FE-204: APPLIED CHEMISTRY AND CHEMICAL ENGINEERING PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>Continuous assessment : 40 Course final examination 60</td>
</tr>
</tbody>
</table>

Lab I:

Analysis of Industrial Raw materials:

Lab II:

Analysis of Industrial Products:

Lab III:

Instrumental analysis

1. study of kinetics of chemical reactions using:

 a) Polarimeter b) Conductance bridge c) Spectrophotometer and d) Chemical analysis

2. Electrochemical measurements: P^H measurements

3. Spectrophotometric analysis
4. Chromatographic analysis
Leather and Synthetic Upper Materials: Ideal properties of upper materials, leather identification, parts of a leather, Influence of temperature and humidity on leather. Effect of structure on the properties of leather, types of finished leather, Production of PVC coated fabrics and PU coated fabrics, Comparison between leather and synthetics.

Solings: Properties, compounding and uses of different soling materials, preparation of soling materials before sole attaching, moulding techniques of soling materials.

Reinforcements: Types of reinforcement materials, the use of reinforcement in toplines, different seam reinforcing materials for shoes, boot, slip-on, sandal, straps and stripping; reinforcement for strengthening loops (Ghillies, D-rings), lasting strains, buckle straps; attaching system of general reinforcement, selection criteria for reinforcement, indirect tape and reinforcement applications, advantages and disadvantages of reinforcement, physical properties of reinforcement, optimum reinforcement combination.

Heel: Definition, different materials for heels, Wood heels, plastic heels, ABS, EPDM, injection moulded heels- mould design, raw materials selection- injection moulding and finishing.

Toe puffs and stiffeners: The purpose of toe puffs, different kinds of toe puffs- solvent activated impregnated fabric, thermoplastic filmic, selection criteria of toe puff, application and positioning of toe puffs, toe puff faults and their effects on footwear, the purpose of shoe stiffeners, pre-moulded stiffeners, stiffeners needed back moulding, types of stiffeners- fully moulded leather board, fully moulded fibre board, thermo impregnated leather board, thermo impregnated fibre board, thermoplastic fabric based, solvent activated impregnated fabric, selection criteria of stiffeners for different footwear, fitting of stiffeners, faults of stiffeners.

Needle and Thread: Parts of a needle, sizing, system, points of needle, needle manufacturing, needle-thread relation, needle-material relationship;

Thread: Types of thread, thread identification, thread consumption, thread packaging.

Shank: Raw material, wood, fibre board, steel, bamboo, shank manufacturing.

Shoe finishes: Cleaners: Cleaners types, properties, selection criteria, repairing wax, edge colouring chemicals, Fillers/sealers: types, properties, selection criteria, application method, combination, Polishes: types, properties, selection criteria, application, Spray/Modifiers/Revivers/Renovators, chemical used for oily/waxy upper. Dubbin, Wax polishes and creams, bottom finishes, heel and edge finishes, upper leather finishes, The water containing finishing creams and some recipes, white polishes. Top dressing, Wrinkle chasing.

Abrasives: Types of abrasives, natural abrasives, artificial abrasives, coated abrasives, abrasive wheels, use of abrasives in shoe making

Packing materials: Shoebox, wrapping paper, shape retainers, cartoon box etc.
References:
1. Venkatappaiah B. - Introduction to the Modern Footwear Technology
3. Korn J. (Editor) - Boot and Shoe Production
4. Thornton J. H. - Text Book of Footwear Manufacture
5. SATRA Bulletin
6. Spencer Crookenden - K Shoes - The first 150 years 1842-1992
7. Ruth Thomson - Making Shoes
8. Swayam Siddha - Product Knowledge

FE-207: MATHEMATICS-II

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Two-dimensional geometry: Change of axes, pair of straight lines, general equation of second degree, circle, system of circle, parabola, hyperbola.

Three dimensional geometry: Plane and lines - co-ordinates, direction ratios and cosines of a line, equations of a line and a plane, intersecting planes, symmetric form of a straight line, angle between lines and planes, coplanar lines, skew lines, shortest distance, curved surfaces, equations of a sphere, section by a plane, tangent plane, standard equations of cone, cylinder and conchoids properties.

Trigonometry: Complex numbers and functions: De Moivres theorem and application, summation of finite trigonometric series, hyperbolic function.

Laplace transforms: Transforms of simple functions, basic operational properties, transforms of derivatives and integrals, periodic functions, convolution theorem, inverse transforms, initial and final value theorem, applications of Laplace transforms to linear differential equations.

Fourier series: Dirichlets conditions, general Fourier series, half range sine and cosine series, parsevals identity, harmonic analysis.

Fourier transforms: Fourier integral representation, Fourier transform pairs, properties, Fourier sine and cosine transforms, transforms of simple functions, transform of derivatives, the convolution integrals of Fourier, application to one dimensional wave and diffusion equation.

Differential equation: Ordinary differential equation: formation of differential equation, solution of first order differential equation by various methods, solutions of general linear equations of second and higher order with constant co-efficient, solutions of homogeneous linear equation.

Partial differential equations: Formation, solution of standard types of first order equation and Lagrange’s equation, classification of second order partial differential equations, linear partial differential equations of second order and higher order with constant coefficients.

References:
Introduction: Historical development of the subject, its nature and scope, nature of statistical data, attributes and variables, population and sample, collection and condensation of data. Frequency distribution, graphical representation of data.

Measures of location: Arithmetic mean, median and mode, geometric mean, harmonic mean, quadratic mean, deciles and percentiles.

Measures of dispersion: Range, mean deviation, standard deviation, variance, quartile deviation. Coefficient of variation, moments and cumulates of a distribution, skewness and kurtosis.

Regression and correlation: Bivariate data, relationship between the varieties, method of least squares, regression line, correlation and regression coefficients, rank correlation.

Probability: Definition of probability and related concepts, laws of probability, discrete and continuous random variables, mathematical expectation, conditional probability, Binomials, poisson and normal distribution and their properties.

Sampling: Population and sample, census and sampling, methods of sampling, random sampling, stratified sampling, systematic sampling, two stage sampling errors and non sampling errors, population projection.

Statistics for industry: Introduction, level of significance, hypothesis, important steps in a test of significance, testing the difference between two-sample mean and population mean. Acceptance sampling procedure, introduction, acceptance sampling by attributes, consumer’s and producer’s acceptance sampling by variables, continuous sampling plan, sequential sampling. Control charts natural tolerance limits and specification limit.

Index number: The concept of an index number, problems in construction of index number. Construction of price, quantity, value and cost of living indices, their uses. Laspeyere, paasche and Fisher’s ideal indices, test of index number, cost of living index number. National income & wealth.

Educational statistics: Introduction, education and psychology, scaling measurement of different scores, IQ, planning, reliability and validity of tests.

DIFFERENCE EQUATIONS AND Z-TRANSFORM: Linear difference with constant coefficients, elementary properties of z transform, applications of z transform, application of z transform to difference equations.

References:
5. Toha H.A.- Introduction to Operation Research.
8. Weatherburn- First course in Mathematical Statistics.
11. Grant- Statistical Quality Control.

FE-211: MECHANICAL ENGINEERING FOR FOOTWEAR MANUFACTURE

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Engineering materials: Introduction, properties of engineering materials, characteristics & specification of brick, composition & uses of sand, constituents of cement, cement concrete (c.c), reinforce cement concrete (r.c.c.), abrasives; types of abrasives, abrasive wheels, use of abrasives in leather-goods, normal abrasive, artificial abrasive, paints & their constituents, fuels & lubricants, types of iron & steels, reason for alloying, iron-carbon equilibrium diagram.

Corrosion: Definition of corrosion, behavior of iron and steel in atmosphere, types of corrosion atmospheric, soil, high temperatures, stray current, protection from corrosion and its types, inorganic coatings, metallic coatings, non-metallic inorganic enamel and cathodic coatings.

Engineering mechanics: Introduction, force, moments and their applications; lever, center of gravity, moment of inertia, work, power and energy, friction on inclined surfaces; wedge, simple stress and strain, pressure vessel, torsion of circular shafts.

Fluid mechanics: Introduction, fluid flow and its measurement, boundary layer equations, laminar flow, turbulent flow, compressible flow, fluid machinery; pumps, lifting machines, etc. compressors; type of compressors, pneumatic compressor; preparation of compressed air, use of compressed air in leather-products machinery, blowers, **hydraulics**: the pressurization, hydraulic clicking press operation, hydraulic devices.

Heat and mass transfer: Introduction, different modes of heat transfer, heat transfer through plane wall, composite wall and cylindrical wall, overall heat transfer co-efficient, critical thickness of insulation, solution of energy balance equations, heat exchangers.

Refrigeration and air-conditioning: Introduction, vapor-compression refrigeration cycle, refrigerants, fundamentals of air-conditioning, summer air-conditioning system.
Reference:

7. Dr. M.A. Aziz- Engineering Materials
9. Rogers and Mathew- Engineering Thermodynamics.

FE-212: MECHANICAL ENGINEERING FOR FOOTWEAR MANUFACTURE PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Continuous assessment : 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Course final examination 60</td>
</tr>
</tbody>
</table>

Mechanical Machines: Introduction, hand tools & accessories, measuring tools, machine tools, uses of steel vice, working bench, lapping machine, lathe, shaper, milling, drilling and grinding machine, air compressor, knife bending machine, knife cutting machine and leather crushing machine etc.

Welding: Shop safety practice, acquaintance with arc and gas welding tools, machines, electrodes, gas cylinders and their identification, types of gas flames, safety and precaution for welding. Practice on gas, arc welding and gas cutting on ms sheets and plates, non-ferrous metal working, cast-iron welding, soldering and brazing, study of welding defects.

Machine elements and their maintenance: Introduction, power transmission system, gear, pulley and chain, bearing, wood and machine screws, simple lifting machine; efficiency of machine, steam boiler and their accessories and mountings, pre-heater, heater, super-heater and economizers, planning and scheduling of preventive maintenance, break-down maintenance and trouble shooting, computerized machine maintenance systems.

FE-213: ELECTRICAL AND ELECTRONIC ENGINEERING
<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Electrical: Different types of symbol used in electrical circuits, types of wires and cables and their uses, domestic and factory wiring, Delta-wye transformation, network-analysis methods of branch and loop currents, method of node-pair voltages, Thevenin's and Norton's theorems, magnetic field, right-hand rule, magnetic flux density, Biot-savart law, magnetic properties of matter, poles and dipoles, Gauß’s law for magnetism, para magnetism, diamagnetism and ferromagnetism, nuclear magnetism, magneto motive force, magnetic field intensity, permeability, susceptibility, energy in a magnetic field, magnetization curves, Hysteresis, magnetic field intensity, measurement of magnetic flux, energy of magnetic field, theory of ferromagnetism. Electrical machines: Introduction to magnetic circuit, eddy current loss, core loss, elementary A.C. generator, Transformer: single-phase transformer-equivalent circuit, laboratory testing, introduction to three-phase transformer, D.C. generator: principles, types, performances and characteristics, D.C. motor: principles, types, performances, speed control, Ward Leonard system, starters and characteristics. A.C. machines: three phase induction motor principles, equivalent circuit, introduction to synchronous machines and fractional horse power motors, choice of motor and generator for specific load, armatures and their types, winding and rewinding of armature, manual and automatic star-delta starters, Driver Servo-motors: basic theory and application. Measuring instruments and their classification, working principles and uses (Ammeter, voltmeter, wattmeter, energy meter, AVO-meter, frequency-meter, earth-tester, clamp-tester and A.C. maggers etc.)

Electronics: Different types of symbol used in electronic circuits, color code of resistors and capacitors, concept of conductor, semiconductor and insulator, emission of electron, thermo ionic valves, principles of operation & applications of semiconductor diode, zener diode, LED, LCD, LDR, Photo diode. Transistors: (bipolar and FETs), silicon controlled rectifier (SCR), DIAC, TRIAC Characteristics and application of CB, CE & CC and class (ABC) amplifiers, feedback in amplifiers, oscillators, inverters, clipping & clamping ckt’s, timer, voltage regulators. OP-amp, digital logic gates (combination and sequential) and its truth table, basic idea about microprocessors, different types of sensors and transducer, strain, pressure, temperature, speed and torque measurement, Microcomputer based systems & Industrial robots.

References:
1. V.K. Metha - Principles of Electronics.
4. B.L. Therera & A.K. Therera - Solid State Electronics
7. Kurt S. Lion - Elements of Electrical and Electronic Instrumentation.

FE-214: ELECTRICAL AND ELECTRONIC ENGINEERING PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Continuous assessment : 40, Course final examination 60</td>
</tr>
</tbody>
</table>

1. Measurement of high resistance by magger and bridge magger.
2. Calibration of voltmeter, ammeter and watt hour meter.
5. Measurement of resistance of a bulb in (i) cold and (ii) hot condition.
6. Star and delta connection of three phase circuit.
7. Connection of a three phase transformer in an AC circuit.
8. Connection of one lamp controlled by single way switch and by two way switch.
9. Connection of two lamps with the main to work as series with no switch and parallel with switch.
10. Connection of a fluorescent lamp controlled by a switch.
11. Connection of an electric bell controlled from two points with lamp indication.
12. Changing of storage battery from DC mains.
13. Detection of defects of DC and AC.
15. Load test of a DC motor.
16. Speed control of a three phases induction motor.
18. Study the characteristic of a general purpose & Zener diode.
19. Study the characteristic of a transistor in CB configuration.
20. Study the characteristic of a transistor in CE configuration.
21. Study the characteristic of a single stage amplifier.
22. Study the basic characteristic of logic gates.
23. Study the basic characteristic of SCR, LDR & TRIAC.
24. Study the basic operation of Microprocessors.
25. Study the basic operation of different sensors & Transducers.

FE- 215: INDUSTRIAL MANAGEMENT FOR FOOTWEAR MANUFACTURE

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5, Total Class: 45</td>
</tr>
</tbody>
</table>

Introduction: Definition of Management- scope, importance, functions, principles, objectives and their attainments- social responsibilities, historical evolution, management process, skills, roles, effectiveness and efficiency.

Planning: Nature and meaning, importance, types, steps, process, tool and techniques, limitation.

Organizing: Definition, principles, importance, types of structures, delegation and decentralization, authority, span of supervision.

Leading: Definition of directing, importance, principles, consultative direction, coordination need, aids, means, motivation, theories, types of needs, means, motivation level in Bangladesh, definition of leadership, theories, and styles.

Controlling: Meaning, types, methods, process, requirements, budgetary control.

Environment: Internal and external, components, merits and demerits.

Global management: Nature and characteristics, management of multinational corporations (MNCS), role of recipient countries, demerits, problems for developing countries like Bangladesh.

Industrial policy of Bangladesh: Nationalization, privatization, foreign investment, role of MNCS, export processing zone, problems of industrialization in Bangladesh, ways to overcome, Government role.

Technology transfer: Definition of technology, types, appropriate technology-technology policy and base, lessons from Japan, Malaysia, Korea, Pakistan, India. Drawbacks of technology transfer.
Management structure in Bangladesh: Features of financial and industrial management, patterns, problems, measures, prospects.

References

FE: 216 COMPUTER GRAPHICS DESIGN

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>In-course assessment: 40, Course final assessment: 60</td>
</tr>
</tbody>
</table>

Adobe Photoshop

Work area: using tools, viewing images, working with palettes.

Basic photo corrections: Resolution and image size, straightening and cropping an image, adjusting the tonal range, removing a color cast, replacing colors in an image, adjusting lightness with the dodge tool, adjusting saturation with the sponge tool.

Selections: making selections, moving selection contents, selecting with the magic wand tool, selecting with the lasso tool, transforming a selection, selecting with the magnetic lasso, cropping an image and erasing within a selection.

Layer basics: Layers, rearranging layers, editing text, flattening and saving files, creating a layer set and adding a layer.

Masks and Channels: Creating a quick mask, editing a quick mask, saving a selection as a mask, editing a mask, loading a mask as a selection and applying an adjustment, extracting an image, applying a filter effect to a masked selection, creating a gradient mask.

Retouching and repairing: repairing areas with the clone stamp tool, pattern stamp tool, healing brush and patch tools, retouching on a separate layer.

Painting and editing: custom workspace, blending an image with the background, changing image with the history tool, brush tool.

Basic pen tool techniques: paths and pen tool, drawing straight paths, drawing curved paths, combining straight and curved path segments, editing anchor points, using paths with artwork, adding layers to complete the effect.

Creating special effects: automating a multi step task.

3D Studio Max

Introduction: MAX interface, customizing MAX interface.

Objects: Referencing External objects, Importing and Exporting, Cloning objects and using arrays, selecting and grouping objects, modifying objects.

Modeling: creating primitive objects, working with spline shapes, meshes, creating patches, creating loft objects, building compound objects.
Materials and Maps: material editor, material maps.

Lights and Cameras: Controlling lights, lighting special effects, controlling cameras, camera matching and tracking.

Particle systems and space wraps: creating and controlling particle systems, space wraps, particle system special effects.

Model systems: Building linked hierarchies, schematic view, creating an inverse kinematics system.

Animation: Animation basics, track view, animating with controllers, expressions, dynamic simulation.

Rendering and post production: Backgrounds, environments and atmospheric effects, setting rendering parameters, render effects.

AutoCAD

Getting familiar with AutoCAD, understanding the drafting tools, Drawing 2D objects, editing AutoCAD objects, editing with the modify panel tools, Drawing fundamentals:
Use of line, circle, square, rectangle, triangle, ellipse, polygon.
Creating 3D drawings, getting organized with layers, using blocks, groups, design center, creating text, using dimensions, gathering information, laying out and painting drawing.

References:

1. Adobe Creative Team – Adobe Photoshop 7.0 Classroom in a book
3. Jon A. Bell – 3D Studio MAx R 2.5 f/x
4. Kelly L. Murdock – 3D Studio Max R3 Bible
5. Alf Yarwood - Introduction to AutoCAD 2009
6. Frede Uhrskov - AutoCAD Tutorials
DETAILED GUIDELINES AND SYLLABUS
FOR
B.Sc. IN FOOTWEAR ENGINEERING

(FOUR YEARS COURSE)

THIRD YEAR

Approved by Academic Council
University of Dhaka
RULES AND REGULATIONS APPLICABLE FOR
INSTITUTE OF LEATHER ENGINEERING AND TECHNOLOGY
DEPARTMENT : FOOTWEAR ENGINEERING

C. ACADEMIC RULES

1. The Institute of Leather Engineering and Technology (ILET), Hazaribagh, Dhaka shall be deemed to be an institute of the University of Dhaka.

2. The degree to be awarded by the University of Dhaka shall be designated as B. Sc. in Footwear Engineering.

9. The Courses for the B. Sc. in Footwear Engineering shall extend over four academic years.

10. The medium of instruction and examination shall be in English.

11. Every year there will be an admission test for new intakes. The rules and regulations and other necessary works for the admission purpose will be performed by the central admission committee of the University.

28. Candidates for admission to the first year B. Sc. in Footwear Engineering shall be required to have passed the Higher Secondary Certificate in Science with Physics, Chemistry and Mathematics or its equivalent from a recognized Board or Institution. Foreign students with requisite qualification may be admitted with the approval of the University of Dhaka.

29. Admission to the first year B. Sc. in Footwear Engineering programme shall be based on the results of S.S.C. and H.S.C. or its equivalent examinations and the admission test to be conducted based on current rules by the Central Admission Committee.

30. The detail syllabus for degree of Footwear Engineering shall be approved by Academic Council of the University of Dhaka.

31. An Examination Committee for each year consisting of 4 (four) members of which 3 (three) shall be internal and 1 (one) from other departments of the Institute or the university or research organization shall be constituted by the departmental academic committee. Any full time teacher of the concerned department of the institute shall be the chairman of the Examination Committee.

32. There shall be a Departmental Academic Committee consisting of all the full-time teaching staff to help academic matters.
33. Every year before the commencement of Academic session the list of part time teachers (if required) shall be prepared course wise and must be approved by the dean of the concern Faculty of Dhaka University. Dean will have the right to modify the list with the consultation with the concern head of the department and the Director of the institute.

34. The question paper setters and the examiners will be selected by the Examination Committee from a panel approved by the University.

35. The question papers shall be moderated by the Examination Committee.

36. No candidate shall be eligible for degree of B. Sc. in Footwear Engineering unless he or she has undergone the approved courses of study for a minimum period of four academic years and maximum of six academic years.

37. There shall be 15, 1-class hour lectures for 1 credit of theory classes. There shall be 30 hour lectures for 1 credit of Practical classes. Each of the class duration is 50 minutes.

38. No student shall be allowed to study any other degree programme during his/her study in Institute of Leather Engineering and Technology.

B. CURRICULUM AND EXAMINATION RULES

17. The subjects to be studied and the scheme of examinations for B. Sc. in Footwear Engineering courses are given in Annexure-A.

18. There shall be a final examination at the end of each academic year to be conducted by the University of Dhaka.

19. Two examiners, of whom one will be the course teacher and the others, shall be from other departments of the Institute or University or research organization. The average of two will be taken as final. In case of the difference of more than 20% marks between the two examiners, the script/scripts will be evaluated by a third examiner appointed by the Examination Committee from the approved panel and the average of nearest two marks will be taken as final. In the case of equal difference between the marks of three examiners the middle marks will be taken as final.

22. Final practical examinations will be conducted jointly by Four examiners, 3 (three) internal and 1 (one) external appointed by the examination committee.

23. Grades and grade points will be awarded on the basis of marks obtained in the written, oral or practical examinations and/or laboratory performance according to the following scheme:

<table>
<thead>
<tr>
<th>Marks Obtained (%)</th>
<th>Grade</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-100</td>
<td>A⁺</td>
<td>4.0</td>
</tr>
<tr>
<td>75-79</td>
<td>A</td>
<td>3.75</td>
</tr>
<tr>
<td>Marks Obtained (%)</td>
<td>Grade</td>
<td>Grade Point</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>70-74</td>
<td>A^-</td>
<td>3.50</td>
</tr>
<tr>
<td>65-69</td>
<td>B^+</td>
<td>3.25</td>
</tr>
<tr>
<td>60-64</td>
<td>B</td>
<td>3.00</td>
</tr>
<tr>
<td>55-59</td>
<td>B^-</td>
<td>2.75</td>
</tr>
<tr>
<td>50-54</td>
<td>C^+</td>
<td>2.50</td>
</tr>
<tr>
<td>45-49</td>
<td>C</td>
<td>2.25</td>
</tr>
<tr>
<td>40-44</td>
<td>D</td>
<td>2.00</td>
</tr>
<tr>
<td><40</td>
<td>F</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Incomplete</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>Withdrawn</td>
</tr>
</tbody>
</table>

A student obtaining ‘D’ or higher grade will be counted as credits earned by him/her. A student obtaining ‘F’ grade will not be counted towards his earned credits.

The GPA (grade point average) will be calculated according to the following formula:

\[
\text{GPA} = \frac{\sum (\text{Grade points in a course} \times \text{Credits for the course})}{\text{Total credits taken}}
\]

CGPA = Cumulative GPA for different years.

22. The total performance of a student in a given course is based on continuous assessment and course final examinations.

(i) For theory courses the assessment is made through in-course assessment, and final examinations;

(ii) The assessment of laboratory and / or field courses will be made through observation of the student at work, viva-voce, assignments and evaluation of practical reports.

An examination committee for each year shall be constituted at the beginning of the session.

The distribution of marks for a course will be as follows:

(a) Theory courses:

In-course assessment: 30% of total marks shall be taken as in-course assessment. 5% marks will be awarded on the basis of attendance as follows:

- 90% and above: 5%
- 85% to less than 90%: 4%
- 80% to less than 85%: 3%
<table>
<thead>
<tr>
<th>Percentage Range</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>75% to less than 80%</td>
<td>2%</td>
</tr>
<tr>
<td>60% to less than 75%</td>
<td>1%</td>
</tr>
<tr>
<td>Less than 60%</td>
<td>0 (Zero)</td>
</tr>
</tbody>
</table>

(ii) Course final examination 70% of total marks
(iii) Continuous assessment 40% of total marks
for practical courses
(iv) Practical Final Examination 60% of total marks

(b) In-course assessment for theory courses: In-course assessment will be done by taking class tests.

(i) Maximum duration of in-course tests will be one class hour.

(ii) Questions for in-course tests may preferably be of multiple choice (MCQ) type. Students may also be evaluated using short questions as decided by the course teacher.

(iii) At least one test for 2 credits hour courses and two tests for 3 or 4 credit hour courses will be taken.

(iv) Course teachers must announce results within 4 weeks of holding the examination.

(v) The course teacher will show the assessed in-course scripts to the students.

(vi) Marks for in-course assessment must be submitted by the course teacher to the Chairman of the Examination Committee and Controller of Examinations before holding the final examination.

(c) Continuous assessment for Practical courses: Continuous assessment will be done on the basis of class performance, report writing and class attendance.

(d) Year-final examination (Theory & Practical courses):

(i) Student having attendance 75% or more (Collegiate) are eligible to appear in the final examination.

(ii) Students having attendance 60-74% are eligible for sitting in the final examination on payment of fees as decided by the University.

(iii) Student having attendance less than 60% are not allowed to sit in the final examination.

(iv) The year final examination will be conducted centrally by Controller of examinations as existing system.
(v) The duration of theoretical examinations will be follows:

<table>
<thead>
<tr>
<th>Credit</th>
<th>Duration of theory examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 credit theory course</td>
<td>4 hours</td>
</tr>
<tr>
<td>3 credit theory course</td>
<td>3 hours</td>
</tr>
<tr>
<td>2 credit theory course</td>
<td>2.5 hours</td>
</tr>
</tbody>
</table>

(vi) Duration of practical examinations will be from 4-6 hours irrespective of credit hours.

(vii) For final examinations, there will be two examiners: first examiner will be one of the course teachers and the second examiner will be from other departments of the Institute or University or Research organization. Evaluation will be made under the existing rule.

(viii) Marks for final examination will be evaluated by broad and short answer questions. Practice of giving options should be avoided as far as possible.

23. A student has to take the required courses for a particular year, appear at the annual examination and score a minimum specified GPA/CGPA to be promoted to the next year.

Promotion to the next year will be given if a student scores minimum GPA/CGPA as follows:

<table>
<thead>
<tr>
<th>Year Range</th>
<th>GPA/CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st year to 2nd year</td>
<td>GPA 2.00 (D)</td>
</tr>
<tr>
<td>2nd year to 3rd year</td>
<td>CGPA 2.25 (C)</td>
</tr>
<tr>
<td>3rd year to 4th year</td>
<td>CGPA 2.25 (C)</td>
</tr>
</tbody>
</table>

24. The requirements for the award of the Bachelor of Engineering degree are as follows of the Department:

(i) Completion of the courses for the minimum required credits in a maximum period of six academic years;

(ii) Appearing at the final examination in all the required courses;

(iii) Scoring a CGPA of 2.5, after considering the grades of improvement Examinations.

25. A student must complete his/her studies for a Bachelor’s Degree within a maximum period of six academic years.

26. Improvement/retake will be followed by:
(i) If students obtain a grade C+ or lower in a course in any year, he/she will be allowed to repeat the term-final examination only once with the following batch for the purpose of grade improvement, but he/she will not be eligible to get a grade better than ‘B+’ in such a course. A student failing to improve his/her grade in a course can retain the earlier grade.

(ii) Grade improvement will not be allowed in those courses in which a student obtains grade better than ‘C+’.

(iii) A student will be allowed to repeat a maximum of 20 credits in four years B.Sc. Program for grade improvement purpose.

(iv) Improvement Examination will be taken only for term-final test. No improvement examination will be taken for in-course, practical course, field work, assignment and oral presentation.

27. (i) A course in which a student has obtained ‘D’ or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained ‘F’ grade will not be counted towards his earned credits.

(ii) A student who obtains ‘F’ grade in a course will be allowed to improve the grade two times with any following batches with a condition that he/she has to complete the Bachelor of Engineering Program within period of 6(six) academic years from the date of first admission.

(iii) ‘F’ grade will not be counted for GPA calculation. But will stay permanently on grade sheet and Transcript. When a student will repeat a course in which he/she previously obtained ‘F’ grade, he/she will not be eligible to get grade better than ‘B+’ (grade point 3.25) in such a course.

28. Readmission will be followed by:

(i) A student may seek re-admission provided he/she has at least 30% attendance in the present year and may continue studies as a regular student.

(ii) On re-admission grade earned earlier by a student in the class of re-admission shall in general cease to exist and the student has to retake all courses and examination but in case if they do not get the opportunity to repeat the courses due to late admission, marks of in-course assessment and laboratory performance assessment in the previous year may be retained by the students.

29. Drop out will be followed by:

A student failing to earn the yearly GPA for promotion from one year to next year after taking improvement / readmission in any year shall be dropped out of the program.

30. Dean’s Award will be followed by:
As a recognition of excellent performance, the names of students obtaining an average CGPA of 3.75 or above in an academic year without appearing any improvement examination may be published in the list of Dean’s award of the Faculty.

31. The failed candidates may seek readmission into the concerned classes on payment of usual fees except university registration fee or may appear in the concerned examination irregular candidates provided they have passed in all practical subjects on payment of examination and center fees as fixed by the University. The marks obtained by the irregular candidates in the practical examinations; in-course assessment and the project work (if applicable) in the earlier session shall be counted in deciding the results of their examinations.

32. The University may from time to time revise, amend or change rules and regulations and scheme of examinations and syllabus. In the case of students already undergoing the course, the changes will take effect from the beginning of the following academic year after the changes are introduced and shall cover the part of the courses that remain to be completed.

33. In the case of any dispute in interpretation of the rules and regulations regarding the degree programme of B.Sc. in Footwear Engineering, the decision of Academic Council of the University of Dhaka shall be final.
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A*</td>
<td>B*</td>
<td>C*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70%</td>
<td>25%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>FE-101</td>
<td>Manufacturing Technology of Footwear-I</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>02.</td>
<td>FE-102</td>
<td>Manufacturing Technology of Footwear-I Practical</td>
<td>4</td>
<td></td>
<td>60 40</td>
</tr>
<tr>
<td>03.</td>
<td>FE-103</td>
<td>Physical Chemistry</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>04.</td>
<td>FE-105</td>
<td>Inorganic Chemistry</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>05.</td>
<td>FE-107</td>
<td>Organic Chemistry</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>06.</td>
<td>FE-108</td>
<td>Chemistry Practical</td>
<td>-</td>
<td>4</td>
<td>- - -</td>
</tr>
<tr>
<td>07.</td>
<td>FE-109</td>
<td>Physics</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>08.</td>
<td>FE-110</td>
<td>Physics Practical</td>
<td>-</td>
<td>2</td>
<td>- - -</td>
</tr>
<tr>
<td>09.</td>
<td>FE-112</td>
<td>Engineering Drawing</td>
<td>-</td>
<td>2</td>
<td>- - -</td>
</tr>
<tr>
<td>10.</td>
<td>FE-113</td>
<td>Computer and Information Engineering</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>11.</td>
<td>FE-114</td>
<td>Computer and Information Engineering-Practical</td>
<td>-</td>
<td>2</td>
<td>- - -</td>
</tr>
<tr>
<td>12.</td>
<td>FE-115</td>
<td>Mathematics-I</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td>13.</td>
<td>FE-117</td>
<td>Business and Communicative English for Engineers</td>
<td>3</td>
<td>-</td>
<td>70 25 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>24 14</td>
<td>560 200 40</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance, B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory A* B* C* A* B**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70% 25% 5 60% 40%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>FE-201</td>
<td>Manufacturing Technology of Footwear-II</td>
<td>3</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>02.</td>
<td>FE-202</td>
<td>Manufacturing Technology of Footwear-II Practical</td>
<td>4</td>
<td>60 40</td>
<td>100</td>
</tr>
<tr>
<td>03.</td>
<td>FE-203</td>
<td>Applied Chemistry and Chemical Engineering</td>
<td>3</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>04.</td>
<td>FE-204</td>
<td>Applied Chemistry and Chemical Engineering Practical</td>
<td>4</td>
<td>60 40</td>
<td>100</td>
</tr>
<tr>
<td>05.</td>
<td>FE-205</td>
<td>Materials Science & Technology</td>
<td>3</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>06.</td>
<td>FE-207</td>
<td>Mathematics-II</td>
<td>3</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>07.</td>
<td>FE-209</td>
<td>Statistics</td>
<td>3</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>08.</td>
<td>FE-211</td>
<td>Mechanical Engineering for Footwear Manufacture</td>
<td>3</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>09.</td>
<td>FE-212</td>
<td>Mechanical Engineering for Footwear Manufacture Practical</td>
<td>- 2</td>
<td>60 40</td>
<td>100</td>
</tr>
<tr>
<td>10.</td>
<td>FE-213</td>
<td>Electrical and Electronic Engineering</td>
<td>3</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>11.</td>
<td>FE-214</td>
<td>Electrical and Electronic Engineering Practical</td>
<td>- 2</td>
<td>- -</td>
<td>100</td>
</tr>
<tr>
<td>12.</td>
<td>FE-215</td>
<td>Industrial Management for Footwear Manufacture</td>
<td>3</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>13.</td>
<td>FE-216</td>
<td>Computer Graphics Design</td>
<td>- 2</td>
<td>- -</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24 14 560 200 40 300 200 1300</td>
<td></td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A* 70%</td>
<td>B* 25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C* 5%</td>
<td>A* 60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B** 40%</td>
</tr>
<tr>
<td>01.</td>
<td>FE-301</td>
<td>Manufacturing Technology of Footwear-III</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>02.</td>
<td>FE-302</td>
<td>Manufacturing Technology of Footwear-III Practical</td>
<td>4</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>03</td>
<td>FE-303</td>
<td>Analytical Chemistry for Footwear Manufacture-I</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>04</td>
<td>FE-304</td>
<td>Analytical Chemistry for Footwear Manufacture</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>05</td>
<td>FE-305</td>
<td>Leather Technology-I</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>06</td>
<td>FE-306</td>
<td>Leather Technology-I Practical</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>07</td>
<td>FE-307</td>
<td>Testing of Footwear and Allied Materials</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>08</td>
<td>FE-308</td>
<td>Testing of Footwear and Allied Materials Practical</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>09</td>
<td>FE-309</td>
<td>Computer Aided Design and Pattern Making</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>FE-310</td>
<td>Computer Aided Design and Pattern Making Practical</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>FE-311</td>
<td>Leather Products Technology</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>FE-312</td>
<td>Leather Products Technology Practical</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>FE-313</td>
<td>Industrial and Production Engineering for Footwear</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manufacture</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>FE-315</td>
<td>Managerial Economics</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>560</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1400</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance; A** = Course final; B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class
For Practical courses 1 Credit = 30 class
FOURTH YEAR

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A* 70%</td>
<td>B* 25%</td>
<td>C* 5%</td>
</tr>
<tr>
<td>01.</td>
<td>FE-401</td>
<td>Manufacturing Technology of Footwear-IV</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>02.</td>
<td>FE-402</td>
<td>Manufacturing Technology of Footwear-IV Practical</td>
<td>4</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>03.</td>
<td>FE-403</td>
<td>Analytical Chemistry for Footwear Manufacture-II</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>04.</td>
<td>FE-405</td>
<td>Footwear Design and Pattern Making</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>05.</td>
<td>FE-406</td>
<td>Footwear Design and Pattern Making Practical</td>
<td>2</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>06.</td>
<td>FE-407</td>
<td>Polymer Science and Engineering</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>07.</td>
<td>FE-408</td>
<td>Polymer Science and Engineering Practical</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>08.</td>
<td>FE-409</td>
<td>Environmental Science and Pollution Control</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>09.</td>
<td>FE-410</td>
<td>Environmental Science and Pollution Control-Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>FE-411</td>
<td>Leather Technology-II</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>11.</td>
<td>FE-412</td>
<td>Leather Technology-II-Practical</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>FE-413</td>
<td>Production Planning and Quality Control</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>13.</td>
<td>FE-415</td>
<td>Entrepreneurship and Business Development</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>14.</td>
<td>FE-416</td>
<td>Project Work and Seminar</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>15.</td>
<td>FE-418</td>
<td>Industrial Training [2 Months]</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>16.</td>
<td>FE-420</td>
<td>Course Viva</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>24</td>
<td>20</td>
<td>560</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
Cutting: Introduction, materials, characteristics and variations in leather, Quality control in cutting room, Productivity of cutting department, Clicking faults, their effects and remedies, material storage, Measurement of leather and synthetic materials, Material economy and its important to cutting department, Lay out of cutting room, Materials allowances and consumption- definition, purpose, Calculation of material allowance- various system- RSM method, SLM method, marking up method, square board method , check method, different type of wastages, nesting technique of full grain leather, corrected grain leather, suede and nubuck leather.

Closing: Stitching- Definition, purpose, different types of stitches- hand stitching, machine stitching, automatic stitching, Seam- Definition, function, different types of seam- closed seam, open seam, lapped seam, butted seam, Brooklyn seam, welted seam, piped seam, thread consumptions for different types of stitches, working environment of closing room, sewing fault and remedies, fitting the upper component, sequence of operation for closing- oxford, Derby, Court, Moccasin, Sandal, Casual, Boot, Sports shoe.

Lasting and Making: Pre- lasting operation- definition, toe puff attaching, back part moulding, upper conditioning, upper and lining attaching, insole preparation and moulding, insole attaching, Lasting definition, principle of lasting operation, different techniques of lasting, post lasting- definition, heat setting, heel preparation, sole preparation, sole pressing and attaching, the relation between heel pairing and heel scouring, edge trimming and setting, the need of machine lasting, adjustment of lasting machine, machine parts and function and its parameter setting, problem finding in machine lasting and remedies, detail controlling of forepart, seat and side lasting operation for different types of footwear, operational sequence in lasting line for - oxford, Derby, Court, Moccasin, Sandal, Casual, Boot, Sports shoe.

Shoe Construction: Definition, cemented construction, veldtschoen construction, sewon construction, and moccasin construction.

Shoe Room Treatment and Finishing: Definition, the aim object of shoe finishing and their utility, identification of leather finishes, characteristics of bottom finishes, edge and heel finishes, upper leather dressing, cleaning, wrinkle chasing, different types of edge trimming, forepart and waist trimming, heel scouring, heel front buffing, bottom finishing, fitting the sock, shoe lacing, various tools, equipments and machinery employed for finishing, their use and general maintenance, recognition and elimination of faults, different types of finishing agent and polishers, spraying- types, techniques, machine faults and remedies.

Packaging: Types of packing, materials use for packing, export packing, use of fungicides for export packing, labeling, dispatching etc.
1. Mean forme-making technique, dead forme, and standard making for court, oxford, and derby.
2. Working pattern making technique for court, oxford, and derby.
4. Attachment of straps of sole.
5. Baby shoe making, slipper making, fancy ladies sandal making
8. Women’s Shoe Making- Fancy shoes, Court shoe, Mule, Bar Shoe, Tie Shoe, Ankle Strap, Sling- back.
9. Closing of court, oxford, derby, sandal, casual, moccasin and sport shoe.
10. Lasting and making of court, oxford, derby sandal, casual, moccasin and sport shoe.

References:
1. Venkatappaiah B. -Introduction to The Modern Footwear Technology-
3. Korn J. (Editor) -Boot and Shoe Production
4. Thornton J. H. -Text Book of Footwear Manufacture
5. SATRA Bulletin
6. Spencer Crookenden -K Shoes -The first 150 years 1842-1992
7. Ruth Thomson -Making Shoes
8. Swayam Siddha -Product Knowledge
9. Swayam Siddha -The Skill of Seam Reducing

FE-303 - ANALYTICAL CHEMISTRY FOR FOOTWEAR MANUFACTURE-I

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5, Total Class: 45</td>
</tr>
</tbody>
</table>

Introduction: Evaluation of analytical results, accuracy and precision, errors, minimization of errors, significant figure and computation, rejection of data- the Q test, sampling.
Gravimetric and volumetric methods: Principles of gravimetric methods, conditions for precipitation co-precipitation and post-precipitation, precipitation from homogeneous solution. Principles of volumetric analysis, Acid-Base titration, complexometric titration, precipitation titration, oxidation-reduction titration. Determination of end point.

Chromatographic techniques: Introduction, principles, classification of chromatographic methods, instrumentation and application of paper, thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Application in leather science.

Analytical spectrometry: *Ultraviolet /Visible spectroscopy:* Introduction, absorption laws, deviation from Beer’s Law, instrumentation, principles, applications, molar extinction coefficient, measuring unknown concentration, absorbing species, absorption spectrum and λ_{MAX}, application of transmission spectrophotometry to dyes. *Reflectance spectrophotometry:* Introduction, principles, Kubelka-Munk equation, reflectance measurement, instrumentation, determination of surface colour of solid substrates, application of reflectance spectrophotometry for the surface colour determination of leather.

Thermal techniques Differential thermal analysis (DTA), Differential scanning calorimetry (DSC), Thermogravimetry (TG): Basic principles and application in leather science.

Chemical analysis of leather and related chemicals: *Tanning materials-* Routine analysis of vegetable, analysis of chrome extract: Cr_2O_3, basicity. *Analysis of leather- vegetable tanned leathers:* moisture, oils and fats, water solubles, insoluble ash, nitrogen and hide substance, degree of tannage, pH of water solubles, oxidized fat, combined fat, differential number, glucose, total ash, epsom salt, analysis of chrome tanned leather; Leather auxiliaries: casein, shellac, oils, fats, and waxes: moisture, acid value, saponification value, iodine value, unsaponifiable matter; determination of sulphide in alkaline liquors, determination of chlorides in alkaline liquors, determination of total available strong alkali.

Environmental analysis: Sampling procedures of waste water for analysis. Analysis of tannery wastewater sample: pH, alkalinity, acidity, total solids, dissolved solids, suspended solids, sulphate, sulphide, chromium, settleable solid.

Laboratory automation: Introduction, approaches to laboratory automation, principles of automation, planning for laboratory automation, automated instruments, microprocessor-controlled instruments: “smart” instruments, computers in analytical chemistry.

Safety practice in laboratory: Introduction, MAK values of working material that involved health hazard, list of harmful materials, carcinogenic working materials, emission protection law, danger symbols, regulations concerning the transportation of materials classified as dangerous goods, prevention of accidents and first aid in laboratory, hazard and hazard agents identification, hazard classification, hazard control, safety management, safety promotion and awareness creation, safety and emergency provisions.

F.E.-304 - ANALYTICAL CHEMISTRY FOR FOOTWEAR MANUFACTURE PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
</table>

Page 69 of 109
1. Determination of fats, oils and other solubles.
3. Determination of sulphated total ash and sulphated water-insoluble ash.
4. Determination of nitrogen and hides substance from different types of leather.
5. Determination of chromium content from different types of leather.
6. Determination of chromium content from different commercial chrome tanning agents.
7. Determination of sulphide from sodium sulphide.
8. Test for the identification of vegetable tanning materials.
11. Determination of sulphur dioxide in bleaching extracts.
12. Determination of iron and copper in vegetable tanning extracts.
14. Determination total available strong alkali.
15. Determination of acid/iodine value of oil/fat.
17. Determination of chloride content from alkaline liquor.
18. Determination of unknown concentration of dye solution.
20. Determination of dissolved solid/suspended solid/total solids from wastewater sample.

References
1. Gary D. Christian- Analytical Chemistry
2. John Kenkel- Analytical Chemistry for Technicians
3. Skoog, Holler & Nieman- Principles of Instrumental Analysis
4. Sharma B. K. - Instrumental Methods of Chemical Analysis
5. Skoog, West & Holler- Fundamental of Analytical Chemistry
6. Browning D. R. - Chromatography
8. Vogel A. I. - Text Book of Quantitative Chemical Analysis
15. Dr. Sethi P.D. - High Performance Liquid Chromatography.
18. Fifield & Haines-Environmental Analytical Chemistry.
19. UNIDO- Tannery and Environment.
20. Chhatwal G.R. - Encyclopedia of Environmental Analysis (vol.1, 2 &3)
Histological structure and chemical composition: Structure of raw hides and skins. Structural difference between hides and skins of different origin, chemical composition of hides and skins

Slaughtering and procurement of hides & skins: Slaughtering and flaying of animals, tools, equipment and techniques for slaughtering and flaying, hides and skins of slaughtered and fallen animals, cares to be taken during flaying, handling and storage of raw hides and skins, collection practice in Bangladesh.

Preservation / curing of hides and skins: Introduction, objectives and principles of preservation, short and long terms preservation, methods of preservation/curing, advantages and disadvantages of different types of curing, factors affecting preservation / curing process.

Defects of hides and skins: Definition, pre-mortem and post-mortem defects of hide and skin and their effect on leather, methods of identification of defects, common defects of hides and skins in Bangladesh and their remedies.

Sorting and gradation of raw hides and skins: Principles; objectives, methods of sorting and grading of hides and skins, importance of sorting and grading in leather processing.

Beam house operations: Introduction and role of beam house operations in leather making.

Soaking: Objectives and different controls in soaking operation, different methods of soaking.

Liming: Chemistry of unhairing, unhairing by different methods, objectives of liming, effects of liming of collagen, enzymatic controls in liming operation to achieve different physical properties of leather.

Deliming and Drenching: Objectives, principles and controls of deliming and drenching.

Bating: Chemistry of proteolytic enzymes used for bating, necessity of bating, Its preparation and controls for desired properties of leather.

Pickling: Acid binding capacity of collagen, use of organic acids or salts in pickling, its necessity and controls, concept of, depickling.

Degreasing: Objects and necessity of degreasing, different systems and methods.

Tanning: Basic concept, theoretical background, tanning potentials of various metals, non-metals, natural and synthetic materials, tanning characteristics, hydrothermal stability and shrinkage temperatures of various tanning materials

Chrome tanning: Historical development, chromium complexes, theories of chrome tanning, factors affecting chrome tanning, basicity and its effect on chrome leather production, masked and self-basified chrome tanning and their advantages and disadvantages
Other tanning Operations:
Aluminum and titanium tanning, Vegetable tanning, Synthetic tanning, Aldehyde tanning, Oil tanning.

References:
2. Krysztof Bienkiewicz-Physical Chemistry of Leather making.
5. O'Flaherty, Roddy, Robert W.T.M. Lollar (Ed)-The Chemistry and Technology of Leather, Volume -1
7. R.Reed - Science for the students of the Leather Technology.
10. Jotirmay Dey - Practical Aspects of the Manufacture of upper Leathers

FE- 306: LEATHER TECHNOLOGY-I PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Continuous assessment : 40, Course final examination 60</td>
</tr>
</tbody>
</table>

1. Manufacturing of Shoe upper leather.
3. Manufacturing of Screen/block printed leather.
5. Manufacturing of Nubuck leather.

References:
1. Theory and Practice of Leather Manufacture- K.T. Sarkar
2. Principles of Leather Manufacture- S.S. Dutta
4. Modern Practice in Leather Manufacture- J.A. Wilson
5. Fundamentals of Leather Manufacturing- Heidemann
7. Possible Defects in Leather Production- G. John
8. Science for Students of Leather Technology- R. Reed
9. The Chemistry & Technology of Leather (vol. 1, 2, 34)- Roddy, Lollar
FE-307: TESTING OF FOOTWEAR AND ALLIED MATERIALS

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Introduction: Objects of carrying out physical testing of leather, few popular thumb tests for upper leathers, disadvantage of thumb tests, classification of physical testing methods.

Sampling: Introduction, statistical aspects of the sampling problem, collection of samples, sections of raw hides and skins and of leather, sampling positions, conditioning of test pieces.

Strength and stretch of leather: Tensile strength and elongation, stitch tearing strength, tearing strength, tongue tearing strength, buckle tear strength, split tear strength, distension and strength of grain by ball burst test, effect of splitting on strength, area stability, effect of relative humidity, effect of oil content, effect of kind of tannage and method of finishing, measurement of the initial strain energy of leather, temper of leather, resilience properties of leather.

Tests for upper and lining materials: Flexing endurance test, principles of flexing, water vapours permeability test, Improving of WVP of upper leather, Water Vapour Absorption and Water vapour coefficient, Wrinkelometer test. Air permeability of leather, dynamic water proofness test, principles of water proofness test, shrinkage temperature, control of shrinkage temperature, Martindale abrasion test, chisel scuff resistance, softness test, how to improve scuff resistance, dry and wet rub fastness, the gray scale.

Tests for finish film: Introduction, bond strength between the leather surface and the finish film, how to improve this bondage, heat resistance of finish film, cold crack resistance, light fastness of finish film, wet and dry rub fastness, test for bleeding, water fastness, elasticity of finish film, resistance to solvent, resistance to washing and cleaning agents, resistance to dressing agents, resistance to water stains, moisture fastness, resistance to plasticizer, resistance to buffing of suede leather, resistance to ageing.

Tests for Soling Materials: Apparent and real densities, abrasive resistance, absorption of water by kubelka method, dynamic water proofness test of sole leather, resistance to cracking of grain crack index, why sole leather cracks and how to pervert it, perspiration resistance of leather, how to improve perspiration resistance of leather, Relative porosity. Hydrolysis test, Flexing test (SATRA BATA Ross flex, Bennewart flex) compression set test, adhesion test oil swelling resistance test.

Tests for safety Footwear: Impact resistance of toecap, compression resistance, electrical resistance. Penetration resistance of metal insole. Upper/outsole and sole interlayer bond strength, insulation against heat, insulation against cold, resistance to fuel oil, corrosion resistance of metallic part.

F.E-308: TESTING OF FOOTWEAR AND ALLIED MATERIALS PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Continuous assessment : 40, Course final examination 60</td>
</tr>
</tbody>
</table>

1. Determination of tensile strength and % of elongation at break.
2. Determination of tear strength / stitch tear strength / tongue tear strength/ split tear strength.
3. Determination of flexing endurance.
5. Determination of water vapor absorption and their co-efficient.
7. Determination of wash fastness, of leather used in products manufacture.
10. Different strength tests of adhesive.
11. Different thread tests.
12. Different tests of accessories.

References

2. Dutta S.S. - An Introduction to the Principles of Physical testing of Leather.
3. O'Flaherty, William. And Roddy-The Chemistry and Technology of Leather, Vol-IV

FE- 309: COMPUTER AIDED DESIGN AND PATTERN MAKING

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Industrial automation: Definition types of automation, development of automation, development of computers, and application of computers to manufacturing.
Computer Integrated Manufacturing (CIM): Principles of CIM, essentials of computer-integrated manufacturing systems, effectiveness of CIM, advantages and disadvantages of CIM.

Computer Aided Design (CAD): Introduction to CAD and its application in different sector of footwear technology, fundamental concepts on coordinate systems; draw line, square, rectangle, triangle, etc. using absolute and incremental system, application to simple operations like moving, copying, rotating, trimming, breaking, linear, angular and dimensioning system, CAD facilities; Geometric modeling-2D and 3D models, surface models, solid models; of optimum design. Computer-automated process planning, automated manufacturing planning-function involved in AMP, computer-aided routing (CAR), CAR system flow.

CAD/CAM: Principles and scope of CAD hardware & software in CAD and introduction to CAM, NC, CNC devices for computer aided cutting including laser and water jet; computer aided stitching, robots in footwear manufacture. Digitization: 2D and 3D coordinate extraction, principles of digital to analog conversion, digital input/output processing systems, programming techniques and languages, computerized techniques, principles and strategies for collection of data for imaging, rendering, data reduction and processing techniques with special reference to footwear design, CAD/CAM system-integrated CAD and CAM. Automatic machine tools for mass production; computer-controlled manufacturing systems; automated assembly, automatic materials handling, industrial robots, industrial robots in manufacturing.

CAD for footwear: Introduction to input and out-put devices required for CAD and their working principles for footwear and leather-products manufacturing; Capabilities of CAD for styling purposes-color, basic primitives; etc.; use of 2D and 3D techniques for ladies, gents and babies footwear; designing, pattern design and grading, pattern production; scra[materials calculation, Shoe master and crispin designing system, their application, advantages and limitations.

CAM for footwear: Tools required in CAM; applications CAM in footwear manufacturing.

References:
5. Pivecka J.- Practical Handbook on Shoe Production.
9. Shoemaster- World Leaders in CAD/CAM technology “PATTERNS USRES GUIDE”.
10. Leather Technology Mission- SHOE DESIGNING

FE – 310: COMPUTER AIDED DESIGN AND PATTERN MAKING PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
</table>

Page 76 of 109
1. Tree-dimensional extruded drawings are created with Elevation and Thickness.
2. Wire-frame models can be constructed by; (a) co-ordinate input (b) referencing existing entities (c)
 using Auto-CAD’s editing commands.
3. Addition to texts on any surface of a 3-D model by appropriate UCS set.
4. Addition of dimensions to 3-D wire-frame models.
5. Use of ARRAY 3D, MIRROR 3D, ROTATE 3D commands.
6. Hatching addition to the surfaces of a 3-D wire-frame model.
7. Modifications to the actives view port are displayed in the other view-port.
8. Use 3D FACE command to add surfaces to a wire-frame models.
9. Creating 3D MESH command for a cubic smooth surface.
10. Application of 3D POLY command to create splinted hill.
11. Application of the edge surface command with four TOUCHING entities.
12. Application of tabulated surface in 2-D of 3-D.
13. Addition of ruled surfaces between lines, arcs and poly lines.
14. Make Auto CAD design for the major components of men’s Derby using Shoemaster/Crispin.
15. Make Auto CAD design for the major components of men’s Monk Derby using Shoemaster/Crispin.
16. Make Auto CAD design for the major components of men’s Apron Derby using Shoemaster/Crispin.
17. Make Auto CAD design for the major components of women’s Derby using Shoemaster/Crispin.
18. Make Auto CAD design for the major components of men’s Oxford using Shoemaster/Crispin.
19. Make Auto CAD design for the major components of women’s Oxford using Shoemaster/Crispin.
20. Make Auto CAD design for the major components of men’s Pantafola using Shoemaster/Crispin.
21. Make Auto CAD design for the major components of Ladies Court Shoe using Shoemaster/Crispin.
22. Make Auto CAD design for the major components of women’s Sandal using Shoe
23. Make Auto CAD design for the major components of men’s Ankle Boot using Shoemaster/Crispin.
24. Make Auto CAD design for the major components of men’s Moccasin using Shoemaster/Crispin.

FE-311: LEATHER PRODUCTS TECHNOLOGY

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Design techniques for leather garments: Clothing and its function, Development of a
collection, fashion and fashion accessories, Materials and components for leather garments and
their selection criteria. Machineries for leather garments production elements of cutting, types of
cutting, lining cutting, different parts simple jacket, sketches and making up complete industrial
pattern, use of body proportions, different types of sleeve, pockets, collar, waist bands,
modification to basic block, design and pattern making, basic sewing exercise for components
assembly computers in pattern grading and design, different parts of a simple trouser, basic trouser block.

Skirt: Classification, Basic measurements, Designing and pattern making of straight skirt, assembling and stitching of skirt.

Jacket: Classification, Basic measurements, Block making for casual jacket and waist coat, Designing and pattern making of jacket and waist coat, Assembling, stitching and finishing of jacket.

FE-312: LEATHER PRODUCTS TECHNOLOGY PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>Continuous assessment : 40, Course final examination 60</td>
</tr>
</tbody>
</table>

Leather Products: (Practical)

1. Introduction of tools and their uses and tooling technique.
2. Leather decoration technique: Stamping, engraving, batik, screen-printing, molded work, embroidery, carving, beveling, shading, appliqué, perforating.
3. Hand stitching, thong or lacing technique, button or repeat attaching.
4. Introduction of pattern cutting technique, consideration of allowance, lining construction, working pattern making.
5. Assembly of pleated pocket and flap, Gusset pocket, assembly of gusset pocket and flap, piping pocket, false pocket. Conical shape pattern making.
7. Fixing of Zipper, back pleat, double pleat. Card holder making, Key ring making
8. Skirt manufacture

References:

1. S.S. Dutta- Introduction to the principles of leather manufacture
2. K.T. Sarkar- Theory and practice of leather manufacture
3. Batsford- Fashion with leather
4. Attwater W.A.-Leather Craft
5. Roland Kilgus- Clothing Technology
8. Gerhard John- Possible defects in leather production.
9. Swayam Siddha -Product Knowledge
10. Swayam Siddha -The Skill of Seam Reducing
11. Martin M. Shoben and Janet P.Ward-Pattern Cutting And Making Up
<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5, Total Class: 45</td>
</tr>
</tbody>
</table>

Metal Casting Processes: casting processes for ferrous and non-ferrous metals; sand, die, centrifugal, slush, plaster mold, loam mold, precision investment casting etc. casting defects, design of moulds, riser, gate sprue and core, cost analysis, metals for casting, product design considerations.

Bulk Deformation Processes in Metal Working: rolling and other deformation processes related to rolling, forging and other deformation processes related to forging, extrusion and other deformation processes related to extrusion, wire and bar drawing.

Sheet Metal Working: cutting operations, bending operations, drawing, other sheet metal forming operations, deep drawing, dies and presses for sheet metal processes, sheet metal operation not for performed on presses, bending of tube stock.

Material Removal Processes: single point cutting tool, chip formation in metal machining, types of chips, various operations performed on turning, milling, drilling, shaping, grinding, broaching etc., cutting tool materials and cutting fluids, tool wear and tool life, economics of machining.

machine, cylinder bed sewing machine, flat bed single & double needle lock stitch sewing machine, post bed single & double needle lock stitch sewing machine, Moccasin sewing machine, lining trimming machine, seam rubbing and taping machine, thread burner, upper leather perforating machine, eyeleting machine, punching and riveting machine. Lasting and finishing section: Counter molding machine, mulling machine, insole attaching machine, toe lasting machine, seat and side lasting machine, heat setting machine, roughing and scouring machine, sole attaching press, ironing machine, last removing machine, heel nailing machine, brushing machine, hand spraying machine, heel marking and sole decorating machine, sock stamping machine, box stamping machine etc.

Standardization: Introduction, product simplification and diversification, interchangeability, selective assembly, principles, preparation of standards, application of standards in design and manufacturing, applying for patents, international and national standard organization.

Reference:
- i) Production Technology- R.K. Jain
- ii) Production Process-Degarmo
- iii) Production Process- Dole
- iv) Manufacturing Process-Kalpakjain

FE-315: MANAGERIAL ECONOMICS

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Managerial economics: Introduction to macro and micro, nature and scope, theories and constructions, firm goals, firm size, location of firm, fundamental concepts and techniques for business decisions.

Demand and supply analysis: Meanings, laws, exceptions, types, determinants and elasticity of demand and supply, demand forecasting for consumer durable like leather, theory of production and supply.

Determination of Prices and Profits under different market conditions: Perfect competition, monopoly and oligopoly costs of production and distribution, pricing practices with special reference to leather, decision making under risk and uncertainty.

Market economy: Meaning, features, markets and prices, operation, dominance of developed countries, impact on developing countries, impact on the economy and industrialization process of Bangladesh.
Monetary policy: Fiscal policy, inflation, devaluation, budgets of Bangladesh, monetary policy for export oriented industries-specially for leather, footwear, leather products, hand- gloves, leather garments, horns and hooves and other by-products based industries, matching grant funds and other special funds for leather, footwear and leather products industries, incentives and other financial supports for leather, footwear and leather products sectors.

Documentation for international business: Up to date govt. documents: export-import policy, monetary policy, duty on import & export, L/C opening, clearing & forwarding, shipment, value added tax (VAT), tariff and non-tariff barriers etc.

Plant & production costing: Selection of machines, cost involved in production system, machine depreciation, material costing, costing for individual item, competitiveness, local & international market price, labor & manpower cost, other overhead cost, cost involved in export/import of goods, gross profit & net profit, break-even point.

References:

3. Dwivedi D.N - Managerial Economics, Vikas publishing, India.
4. Export Quality Management, ISO 9000 Quality Management systems,
7. Kranse- Economic Development
8. Eilis and Buchanon-Approaches to Economic Development.
UNIVERSITY OF DHAKA
BANGLADESH

DETAILED SYLLABUS
FOR
B. Sc. IN FOOTWEAR ENGINEERING

(FOUR YEARS COURSE)

FOURTH YEAR

Approved by Academic Council
University of Dhaka
D. ACADEMIC RULES

1. The Institute of Leather Engineering and Technology (ILET), Hazaribagh, Dhaka shall be deemed to be an institute of the University of Dhaka.

2. The degree to be awarded by the University of Dhaka shall be designated as B. Sc. in Footwear Engineering.

3. The Courses for the B. Sc. in Footwear Engineering shall extend over four academic years.

4. The medium of instruction and examination shall be in English.

5. Every year there will be an admission test for new intakes. The rules and regulations and other necessary works for the admission purpose will be performed by the central admission committee of the University.

6. Candidates for admission to the first year B. Sc. in Footwear Engineering shall be required to have passed the Higher Secondary Certificate in Science with Physics, Chemistry and Mathematics or its equivalent from a recognized Board or Institution. Foreign students with requisite qualification may be admitted with the approval of the University of Dhaka.

7. Admission to the first year B. Sc. in Footwear Engineering programme shall be based on the results of S.S.C. and H.S.C. or its equivalent examinations and the admission test to be conducted based on current rules by the Central Admission Committee.

8. The detail syllabus for degree of Footwear Engineering shall be approved by Academic Council of the University of Dhaka.

9. An Examination Committee for each year consisting of 4 (four) members of which 3 (three) shall be internal and 1 (one) from other departments of the Institute or the university or research organization shall be constituted by the departmental academic committee. Any full time teacher of the concerned department shall be the chairman of the Examination Committee.

10. There shall be a Departmental Academic Committee consisting of all the full-time teaching staff to help academic matters.
44. Every year before the commencement of Academic session the list of part time teachers (if required) shall be prepared course wise and must be approved by the dean of the concern Faculty of Dhaka University. Dean will have the right to modify the list with the consultation with the concern head of the department and the Director of the institute.

45. The question paper setters and the examiners will be selected by the Examination Committee from a panel approved by the University.

46. The question papers shall be moderated by the Examination Committee.

47. No candidate shall be eligible for degree of B. Sc. in Footwear Engineering unless he or she has undergone the approved courses of study for a minimum period of four academic years and maximum of six academic years.

48. There shall be 15, 1-class hour lectures for 1 credit of theory classes. There shall be 30 hour lectures for 1 credit of Practical classes. Each of the class duration is 50 minutes.

49. No student shall be allowed to study any other degree programme during his/her study in Institute of Leather Engineering and Technology.

B. CURRICULUM AND EXAMINATION RULES

17. The subjects to be studied and the scheme of examinations for B. Sc. in Footwear Engineering courses are given in Annexure-A.

18. There shall be a final examination at the end of each academic year to be conducted by the University of Dhaka.

19. Two examiners, of whom one will be the course teacher and the others, shall be from other departments of the Institute or University or research organization. The average of two will be taken as final. In case of the difference of more than 20% marks between the two examiners, the script/scripts will be evaluated by a third examiner appointed by the Examination Committee from the approved panel and the average of nearest two marks will be taken as final. In the case of equal difference between the marks of three examiners the middle marks will be taken as final.

23. Final practical examinations will be conducted jointly by Four examiners, 3 (three) internal and 1 (one) external appointed by the examination committee.

24. Grades and grade points will be awarded on the basis of marks obtained in the written, oral or practical examinations and/or laboratory performance according to the following scheme:

<table>
<thead>
<tr>
<th>Marks Obtained (%)</th>
<th>Grade</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-100</td>
<td>A⁺</td>
<td>4.0</td>
</tr>
<tr>
<td>75-79</td>
<td>A</td>
<td>3.75</td>
</tr>
<tr>
<td>Marks Obtained (%)</td>
<td>Grade</td>
<td>Grade Point</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td><40</td>
<td>F</td>
<td>0.00</td>
</tr>
<tr>
<td>45-49</td>
<td>C</td>
<td>2.25</td>
</tr>
<tr>
<td>50-54</td>
<td>C+</td>
<td>2.50</td>
</tr>
<tr>
<td>55-59</td>
<td>B-</td>
<td>2.75</td>
</tr>
<tr>
<td>60-64</td>
<td>B</td>
<td>3.00</td>
</tr>
<tr>
<td>65-69</td>
<td>B+</td>
<td>3.25</td>
</tr>
<tr>
<td>70-74</td>
<td>A-</td>
<td>3.50</td>
</tr>
</tbody>
</table>

A student obtaining ‘D’ or higher grade will be counted as credits earned by him/her. A student obtaining ‘F’ grade will not be counted towards his earned credits.

The GPA (grade point average) will be calculated according to the following formula:

$$\text{GPA} = \frac{\sum (\text{Grade points in a course} \times \text{Credits for the course})}{\text{Total credits taken}}$$

CGPA = Cumulative GPA for different years.

22. The total performance of a student in a given course is based on continuous assessment and course final examinations.

(i) For theory courses the assessment is made through in-course assessment, and final examinations;

(ii) The assessment of laboratory and / or field courses will be made through observation of the student at work, viva-voce, assignments and evaluation of practical reports.

An examination committee for each year shall be constituted at the beginning of the session.

The distribution of marks for a course will be as follows:

(a) Theory courses:

In-course assessment: 30% of total marks shall be taken as in-course assessment. 5% marks will be awarded on the basis of attendance as follows:

- 90% and above: 5%
- 85% to less than 90%: 4%
- 80% to less than 85%: 3%
<table>
<thead>
<tr>
<th>Percentage Range</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>75% to less than 80%</td>
<td>2%</td>
</tr>
<tr>
<td>60% to less than 75%</td>
<td>1%</td>
</tr>
<tr>
<td>Less than 60%</td>
<td>0 (Zero)</td>
</tr>
</tbody>
</table>

(ii) Course final examination

(iii) Continuous assessment for practical courses

(iv) Practical Final Examination

(b) In-course assessment for theory courses: In-course assessment will be done by taking class tests.

(i) Maximum duration of in-course tests will be one class hour.

(ii) Questions for in-course tests may preferably be of multiple choice (MCQ) type. Students may also be evaluated using short questions as decided by the course teacher.

(iii) At least one test for 2 credits hour courses and two tests for 3 or 4 credit hour courses will be taken.

(iv) Course teachers must announce results within 4 weeks of holding the examination.

(v) The course teacher will show the assessed in-course scripts to the students.

(vi) Marks for in-course assessment must be submitted by the course teacher to the Chairman of the Examination Committee and Controller of Examinations before holding the final examination.

(c) Continuous assessment for Practical courses: Continuous assessment will be done on the basis of class performance, report writing and class attendance.

(d) Year-final examination (Theory & Practical courses):

(i) Student having attendance 75% or more (Collegiate) are eligible to appear in the final examination.

(ii) Students having attendance 60-74% are eligible for sitting in the final examination on payment of fees as decided by the University.

(iii) Student having attendance less than 60% are not allowed to sit in the final examination.

(iv) The year final examination will be conducted centrally by Controller of examinations as existing system.
(v) The duration of theoretical examinations will be follows:

<table>
<thead>
<tr>
<th>Credit</th>
<th>Duration of theory examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 credit theory course</td>
<td>4 hours</td>
</tr>
<tr>
<td>3 credit theory course</td>
<td>3 hours</td>
</tr>
<tr>
<td>2 credit theory course</td>
<td>2.5 hours</td>
</tr>
</tbody>
</table>

(vi) Duration of practical examinations will be from 4-6 hours irrespective of credit hours.

(vii) For final examinations, there will be two examiners: first examiner will be one of the course teachers and the second examiner will be from other departments of the Institute or University or Research organization. Evaluation will be made under the existing rule.

(viii) Marks for final examination will be evaluated by broad and short answer questions. Practice of giving options should be avoided as far as possible.

23. A student has to take the required courses for a particular year, appear at the annual examination and score a minimum specified GPA/CGPA to be promoted to the next year.

Promotion to the next year will be given if a student scores minimum GPA/CGPA as follows:

- 1st year to 2nd year: GPA 2.00 (D)
- 2nd year to 3rd year: CGPA 2.25 (C)
- 3rd year to 4th year: CGPA 2.25 (C)

24. The requirements for the award of the Bachelor of Engineering degree are as follows of the Department:

 (i) Completion of the courses for the minimum required credits in a maximum period of six academic years;
 (ii) Appearing at the final examination in all the required courses;
 (iii) Scoring a CGPA of 2.5, after considering the grades of improvement Examinations.

25. A student must complete his/her studies for a Bachelor’s Degree within a maximum period of six academic years.

26. Improvement/retake will be followed by:
(i) If students obtain a grade C+ or lower in a course in any year, he/she will be allowed to repeat the term-final examination only once with the following batch for the purpose of grade improvement, but he/she will not be eligible to get a grade better than ‘B’ in such a course. A student failing to improve his/her grade in a course can retain the earlier grade.

(ii) Grade improvement will not be allowed in those courses in which a student obtains grade better than ‘C+’.

(iii) A student will be allowed to repeat a maximum of 20 credits in four years B.Sc. Program for grade improvement purpose.

(iv) Improvement Examination will be taken only for term-final test. No improvement examination will be taken for in-course, practical course, field work, assignment and oral presentation.

27. (i) A course in which a student has obtained ‘D’ or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained ‘F’ grade will not be counted towards his earned credits.

 (ii) A student who obtains ‘F’ grade in a course will be allowed to improve the grade two times with any following batches with a condition that he/she has to complete the Bachelor of Engineering Program within period of 6(six) academic years from the date of first admission.

 (iii) ‘F’ grade will not be counted for GPA calculation. But will stay permanently on grade sheet and Transcript. When a student will repeat a course in which he/she previously obtained ‘F’ grade, he/she will not be eligible to get grade better than ‘B+’ (grade point 3.25) in such a course.

28. Readmission will be followed by:

 (i) A student may seek re-admission provided he/she has at least 30% attendance in the present year and may continue studies as a regular student.

 (ii) On re-admission grade earned earlier by a student in the class of re-admission shall in general cease to exist and the student has to retake all courses and examination but in case if they do not get the opportunity to repeat the courses due to late admission, marks of in-course assessment and laboratory performance assessment in the previous year may be retained by the students.

29. Drop out will be followed by:

 A student failing to earn the yearly GPA for promotion from one year to next year after taking improvement / readmission in any year shall be dropped out of the program.

30. Dean’s Award will be followed by:
As a recognition of excellent performance, the names of students obtaining an average CGPA of 3.75 or above in an academic year without appearing any improvement examination may be published in the list of Dean’s award of the Faculty.

31. The failed candidates may seek readmission into the concerned classes on payment of usual fees except university registration fee or may appear in the concerned examination irregular candidates provided they have passed in all practical subjects on payment of examination and center fees as fixed by the University. The marks obtained by the irregular candidates in the practical examinations; in-course assessment and the project work (if applicable) in the earlier session shall be counted in deciding the results of their examinations.

32. The University may from time to time revise, amend or change rules and regulations and scheme of examinations and syllabus. In the case of students already undergoing the course, the changes will take effect from the beginning of the following academic year after the changes are introduced and shall cover the part of the courses that remain to be completed.

33. In the case of any dispute in interpretation of the rules and regulations regarding the degree programme of B.Sc. in Footwear Engineering, the decision of Academic Council of the University of Dhaka shall be final.
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A* 70%</td>
<td>B* 25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>01.</td>
<td>FE-101</td>
<td>Manufacturing Technology of Footwear-I</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>02.</td>
<td>FE-102</td>
<td>Manufacturing Technology of Footwear-I Practical</td>
<td>4</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>03.</td>
<td>FE-103</td>
<td>Physical Chemistry</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>04.</td>
<td>FE-105</td>
<td>Inorganic Chemistry</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>05.</td>
<td>FE-107</td>
<td>Organic Chemistry</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>06.</td>
<td>FE-108</td>
<td>Chemistry Practical</td>
<td>-</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>07.</td>
<td>FE-109</td>
<td>Physics</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>08.</td>
<td>FE-110</td>
<td>Physics Practical</td>
<td>-</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>09.</td>
<td>FE-112</td>
<td>Engineering Drawing</td>
<td>-</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>10.</td>
<td>FE-113</td>
<td>Computer and Information Engineering</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>11.</td>
<td>FE-114</td>
<td>Computer and Information Engineering-Practical</td>
<td>-</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>12.</td>
<td>FE-115</td>
<td>Mathematics-I</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>13.</td>
<td>FE-117</td>
<td>Business and Communicative English for Engineers</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>14</td>
</tr>
</tbody>
</table>

A* = Course final examination; B*= In-course assessment ; C*= Attendance. B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course No.</th>
<th>Subject</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td>A* 70%</td>
</tr>
<tr>
<td>01.</td>
<td>FE-201</td>
<td>Manufacturing Technology of Footwear-II</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>02.</td>
<td>FE-202</td>
<td>Manufacturing Technology of Footwear-II Practical</td>
<td>4</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>03.</td>
<td>FE-203</td>
<td>Applied Chemistry and Chemical Engineering</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>04.</td>
<td>FE-204</td>
<td>Applied Chemistry and Chemical Engineering Practical</td>
<td>4</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>05.</td>
<td>FE-205</td>
<td>Materials Science & Technology</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>06.</td>
<td>FE-207</td>
<td>Mathematics-II</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>07.</td>
<td>FE-209</td>
<td>Statistics</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>08.</td>
<td>FE-211</td>
<td>Mechanical Engineering for Footwear Manufacture</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>09.</td>
<td>FE-212</td>
<td>Mechanical Engineering for Footwear Manufacture Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>FE-213</td>
<td>Electrical and Electronic Engineering</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>11.</td>
<td>FE-214</td>
<td>Electrical and Electronic Engineering Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>FE-215</td>
<td>Industrial Management for Footwear Manufacture</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>13.</td>
<td>FE-216</td>
<td>Computer Graphics Design</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>14</td>
<td>560</td>
<td>200</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class

For Practical courses 1 Credit = 30 class
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course No.</th>
<th>Subject</th>
<th>Credit</th>
<th>Theory</th>
<th>Practical</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A* 70%</td>
<td>B* 25%</td>
<td>C* 5%</td>
<td>A* 60% B** 40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>FE-301</td>
<td>Manufacturing Technology of Footwear-III</td>
<td>3</td>
<td>-</td>
<td>70</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>02.</td>
<td>FE-302</td>
<td>Manufacturing Technology of Footwear-III Practical</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>03.</td>
<td>FE-303</td>
<td>Analytical Chemistry for Footwear Manufacture-I</td>
<td>3</td>
<td>-</td>
<td>70</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>04.</td>
<td>FE-304</td>
<td>Analytical Chemistry for Footwear Manufacture Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>05.</td>
<td>FE-305</td>
<td>Leather Technology-I</td>
<td>3</td>
<td>-</td>
<td>70</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>06.</td>
<td>FE-306</td>
<td>Leather Technology-I Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>07.</td>
<td>FE-307</td>
<td>Testing of Footwear and Allied Materials</td>
<td>3</td>
<td>-</td>
<td>70</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>08.</td>
<td>FE-308</td>
<td>Testing of Footwear and Allied Materials Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>09.</td>
<td>FE-309</td>
<td>Computer Aided Design and Pattern Making</td>
<td>3</td>
<td>-</td>
<td>70</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>10.</td>
<td>FE-310</td>
<td>Computer Aided Design and Pattern Making Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11.</td>
<td>FE-311</td>
<td>Leather Products Technology</td>
<td>3</td>
<td>-</td>
<td>70</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>12.</td>
<td>FE-312</td>
<td>Leather Products Technology Practical</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13.</td>
<td>FE-313</td>
<td>Industrial and Production Engineering for Footwear Manufacture</td>
<td>3</td>
<td>-</td>
<td>70</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>14.</td>
<td>FE-315</td>
<td>Managerial Economics</td>
<td>3</td>
<td>-</td>
<td>70</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>16</td>
<td>560</td>
<td>200</td>
</tr>
</tbody>
</table>

A* = Course final examination; B* = In-course assessment; C* = Attendance; A** = Course final; B** = Continuous assessment

For Theoretical courses 1 Credit = 15 class
For Practical courses 1 Credit = 30 class
FOURTH YEAR

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course No.</th>
<th>Subject</th>
<th>Credit</th>
<th>Marks Distribution</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A*</td>
<td>B*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>01.</td>
<td>FE-401</td>
<td>Manufacturing Technology of Footwear-IV</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>02.</td>
<td>FE-402</td>
<td>Manufacturing Technology of Footwear-IV Practical</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>03.</td>
<td>FE-403</td>
<td>Analytical Chemistry for Footwear Manufacture-II</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>04.</td>
<td>FE-405</td>
<td>Footwear Design and Pattern Making</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>05.</td>
<td>FE-406</td>
<td>Footwear Design and Pattern Making Practical</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>06.</td>
<td>FE-407</td>
<td>Polymer Science and Engineering</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>07.</td>
<td>FE-408</td>
<td>Polymer Science and Engineering Practical</td>
<td>2</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>08.</td>
<td>FE-409</td>
<td>Environmental Science and Pollution Control</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>09.</td>
<td>FE-410</td>
<td>Environmental Science and Pollution Control-Practical</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>FE-411</td>
<td>Leather Technology-II</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>11.</td>
<td>FE-412</td>
<td>Leather Technology-II-Practical</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>FE-413</td>
<td>Production Planning and Quality Control</td>
<td>3</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>13.</td>
<td>FE-415</td>
<td>Entrepreneurship and Business Development</td>
<td>3</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>FE-416</td>
<td>Project Work and Seminar</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>FE-418</td>
<td>Industrial Training [2 Months]</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>16.</td>
<td>FE-420</td>
<td>Course Viva</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>24</td>
<td>20</td>
<td>560</td>
</tr>
</tbody>
</table>

- A* = Course final examination; B* = In-course assessment; C* = Attendance; B** = Continuous assessment
- For Theoretical courses 1 Credit = 15 class
- For Practical courses 1 Credit = 30 class
FE-401: MANUFACTURING TECHNOLOGY OF FOOTWEAR-IV

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Cutting: Initiation in knife, Reinforcement for clicking knife, Knife management, Break even point, Tin pattern for hand cutting, Cutters controlling technique, Documentation for cutting department, Synthetic costing, Bottom components cutting- sole cutting, Sole preparation, Matrix skiving.

Closing: Sequence of operation for closing- oxford, Derby, Court, Moccasin, Sandal, Boot, Monk Shoe, Mule, Slipper, Machine requirement for different types of shoes, Machine setup and line balancing, Fault analysis and remedies of closing, Causes of thread breakage, Needle breakage and their remedies, Quality parameters for closing department.

Lasting: Lasting procedure for flat lasting, force lasting, string lasting, veldtschoen, slip lasted, strobel construction, Operation sequence in lasting line for oxford, Derby, Court, Moccasin, Sandal, Boot, Monk Shoe, Mule, Slipper.

Shoe Construction and Moulding Technique: Injection moulding(Direct), Direct vulcanizing, Casting(Direct) moulding shoe, Footwear construction, Stitch down construction, Veldtschoen construction and Goodyear welt construction, Californian slip lasted construction, String lasting construction.

Standard Workshop Guide Cemented: Machine requirements for 1000 pairs per day production, Machinery documentation and specification, Operator requirement, Workshops layout, List of equipment and hand tools, Equipment documentation, and Rink system.

Specific types of footwear: Safety footwear- purpose of safety footwear, required standards for safety, protective and occupational footwear and application field of safety footwear, construction and operational procedure of safety footwear. Welted footwear- general features of welted footwear, preparation of insole, position of lip in relation to insole edge, Preparation of upper, Last for welted footwear, attachment of welt and sole for making welted footwear. Sports footwear- The need of footwear for sports, special features of sports footwear for specific sports, Types of sports footwear, fitting of footwear, Turn shoe.

Medicated Footwear: Diabetic and Orthopedic footwear- Definition, selection of material, purpose, design, last, manufacturing procedure.

FE-402: MANUFACTURING TECHNOLOGY OF FOOTWEAR-IV PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>Continuous assessment : 40, Course final examination 60</td>
</tr>
</tbody>
</table>
1. Preparation of hand tools required in finishing departments
2. Practice in heel attachment by hand and machine
3. Practice in trimming sole and heel by hand and machine.
4. Marking and pairing of components
5. Practice of splitting and skiving, marking, edge colouring, stamping, folding, reinforcing of the components
6. Punching, gimping, eye-letting and trims fittings
7. Assembling the lining for quarter, vamp and other parts
10. Women’s Shoe Making- Fancy shoes, Court shoe, Mule, Bar Shoe, Tie Shoe, Ankle Strap, Sling- back.
12. Sole preparation: P.U, PVC, TPR, Rubber, EVA/Leather

References:

1. Martin, Shoben, Janet P. Ward - Pattern Cutting and Making Up
2. Swayam Siddha - The Art of Cutting Kid and Goat Skin
3. Swayam Siddha - The Art of Cutting a Buffalo Leather
4. Swayam Siddha - The Art of Cutting Corrected Grain Leather
5. Venkatappaiah B.- Introduction To The Modern Footwear Technology-
7. Korn J. (Editor) - Boot and Shoe Production
8. Thornton J. H.- Text Book of Footwear Manufacture
9. SATRA Bulletin
10. Spencer Crookenden - K Shoes -The first 150 years 1842-1992
11. Ruth Thomson - Making Shoes
12. Swayam Siddha - Product Knowledge
13. Swayam Siddha - The Skill of Seam Reducing

FE-403: ANALYTICAL CHEMISTRY FOR FOOTWEAR MANUFACTURE--II

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Chromatography:

Ion-exchange methods: Introduction, ion-exchange resins, synthetic organic ion-exchangers, use of ion-exchange resins. Anion and cation exchange resins, properties of ion exchange resin, application of ion-exchange resins, ion-exchange chromatography, ion-exchange columns, application of ion exchange chromatography, ion-chromatography.

High-Performance liquid chromatography: Basic concept, comparison of HPLC with gas-liquid chromatography, apparatus for HPLC, solvent delivery, sample injector, selection of column Different detectors:- UV & RI detectors, Qualitative and quantitative analysis, effect of temperature in HPLC, application of HPLC.

Spectrometry:

Infrared spectrometry: Principles, instrumentations and applications.

Nuclear magnetic resonance spectrometry: Principles, instrumentations and applications.

Mass spectrometry: Principles, instrumentations and applications.

Atomic absorption spectrometry: Introduction, basic principles, instrumentation, effect of flame temperature, chemical & spectral interference, recent developments, applications.

Surface characterization by spectroscopy and microscopy: Introduction to the study of surfaces, spectroscopic surface methods, scanning electron microscopy, scanning probe microscopes, principles involved in the morphological investigation on leather and polymers, imaging techniques for surface applications, ESCA, Auger spectroscopy.

Particle size measurements: Introduction, working principles, qualitative and quantitative information, applications.

Analysis of leather- analysis of alum tanned leather; formaldehyde tanned leather. Leather auxiliaries: analysis of sulphated oils: moisture, acid value, soaps, organically combined SO₃ existing as neutralized sulphuric esters and as neutralized sulphonic esters, sodium sulphate, sodium chloride, unsaponifiable matter, qualitative identification of surface active groups, determination of hydroxyproline in materials containing collagen.

References:

1. Gary D. Christian- Analytical Chemistry
2. John Kenkel- Analytical Chemistry for Technicians
3. Skoog, Holler & Nieman- Principles of Instrumental Analysis
FE-405: FOOTWEAR DESIGN & PATTERN MAKING

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Art & Design: Definition and brief idea and discussion on art, design, motif, fashion, style, fads, craze, newness, degree of newness, crafts, Application of design, motif, fashion, style in footwear, exploration of design source and influence available for footwear design, art and craft relationship.

Footwear fashion & style: History of shoes, shoes used in myth, story, and social life, World renowned designer and their lifestyle. Product sketching, sketching variety of shoe styles and design covering men’s, women’s children’s footwear, effective use of line, shape and texture, sketching as an art form for shoe interpretation, use of line, light, shade and color to create impact, illustration, accessories material drawing.

Foot and last: Last suitability and features for full range of shoes for men’s, women’s and children’s, Detail study about foot measurement.

Product development: Product development procedure, color board preparation, story board, theme board preparation, motif analysis, creativity analysis, logo design, value addition, design process, research and inspiration, cultural value in design.

Range building and collection building: Pre design stage, market segmentation, market analysis, brainstorm product outline, draft production, marketing plan, design stage, prototype making, selection stage, analyze customer reaction, set selling price, path finder, tooling stage, Design specification making and costing. Detail design specification sheet making for every single component, costing procedure.

Color: Basic knowledge and information about Color, color forecasting, different color scheme, interpretation of color, color keying, influenced of color in design, color combination.

Pattern cutting: Techniques of pattern cutting for moccasin, boot, sandal, monk, court, loafer,
sports, jogger, and asymmetrical oxford \derby ,pattern cutting technique for bottom components, reinforcement, and interlining ,pattern cutting techniques for strobel , stitch down , Californian and turn construction shoes

Bottom components pattern cutting: Last bottom patterns, stiffener or counter patterns, toe puff patterns, sock patterns, insole patterns, sole patterns, and heel patterns.

Grading: Introduction, enlarging and reducing shapes, radial projections, geometric or proportional grade, arithmetic grade, straight grading, restricted grading, coordinated grading, group grading, centre grading, grading exercises by hand, pantograph, machine.

Supporting design concept: Sole tread pattern designing and outline of sole mould design, packaging design and logo design. Changing language from craft workshops to factory assembly line, how different methods of production and target markets shape the critical approach to discussing design.

Fashion marketing: Market segmentation, demographic and psychographics design implication for different customer groups aspects of consumer \buyer behavior, customer profiles, customer needs and wants, product pricing, brand image, market research

Design Analysis: Subjective judgment, Taste and aesthetics subjectivity, Objectivity; High and low cultural values in design, Criticism in Fashion design Issues of luxury and utility.

FE-406: FOOTWEAR DESIGN & PATTERN MAKING PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>forest assessment : 40, Course final examination 60</td>
</tr>
</tbody>
</table>

1. Standard and pattern making of the following shoes:
 - a) Oxford
 - b) Derby
 - c) Gibson
 - d) Moccasin
 - e) Slip-on
 - f) Monk shoe
 - g) Sandals
 - h) Court shoes
 - i) Sports shoe
 - м) আষষড়

2. Pattern making of the followings:
 - a) Flat lasting
 - b) String lasting
 - c) Force lasting
 - d) Lasting up
 - e) Stitch down
 - f) Good year welted

3. Pattern cutting of bottom components:
 - a) Stiffener / Counter patterns
 - b) Toe puff patterns
 - c) Sock patterns
 - d) Insole patterns
 - e) Sole patterns
 - f) Heel patterns

References :
15. Martin, Shoben, Janet P. Ward - Pattern Cutting and Making Up
16. Swayam Siddha - The Art of Cutting Kid and Goat Skin
17. Venkatappaiah B. - Introduction To The Modern Footwear Technology-
19. Korn J. (Editor) - Boot and Shoe Production
20. Thornton J. H. - Text Book of Footwear Manufacture
21. SATRA Bulletin
22. Spencer Crookenden - K Shoes -The first 150 years 1842-1992

FE-407: POLYMER SCIENCE AND ENGINEERING

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Polymeric materials: Definition and classification of polymers, chemistry and mechanism involved in different polymerization process such as stepwise, addition, ring opening, free radical polymerization, polymerization techniques-Bulk, solution, suspension and emulsion polymerization. Co-polymerization, anionic and cationic polymerizations. Chemistry & Technology involved in - Natural & synthetic rubber, PVC, polystyrene, PU, LDPE & HDPE polypropylene, EVA, ABS, acrylics, fibre reinforced plastics, poromerics /PVC or PU coated fabrics. Polymeric materials as adhesives and binders.

Macromolecules: Introduction, classification, structure of macromolecules in solid and solution state.

Structure and properties of polymers: Chemical and geometrical structure of polymer molecules, glass transition temperature and related topics of polymers properties, crystallinity in polymers.

Properties of commercial polymers: Introduction, polyamide and related polymers, phenol-formaldehyde polymers, urea-formaldehyde polymers and melamine-formaldehyde polymers, cellulose and related polymers, silicones, epoxies and biopolymers.

Polymers Degradation and Environmental issues: Introduction, types of degradation, management of plastics in the environment, polymer recycling, incineration, biodegradation, impact on environment of various types of polymers.

Polymers, additives, blends and Composites: Additives, plasticizer, filler and reinforcements, other important additives, polymer blends and interpenetrating networks- polymer blend.

Polymers used in Leather, Footwear and Leather products industry: Introduction, important polymers used in leather industry and application in leather processing.

Polymer processing: Basic processing operations, Plastic technology, Fibre technology, Elastomer technology.
FE-408: POLYMER SCIENCE AND ENGINEERING PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Continuous assessment: 40, Course final examination 60

1. Identification of polymers use in leather, footwear and leather products manufacturing.
2. Determination of chemical compositions of selected polymers.
3. Determination of ionic character of selected polymers and surfactants.
7. Determination of film hardness of acrylic, polyurethane, butadiene binders.
9. Determination of tensile strength and elongation of the finish film formation by acrylic, polyurethane, butadiene binders
10. Determination of ironing effect of acrylic, polyurethane, butadiene binders
11. Determination of flexibility of finish film based on acrylic, polyurethane, butadiene binders.
12. Determination of water resistance of finish film based on acrylic, polyurethane, butadiene binders, silicones based compounds and nitrocellulose based compounds
13. Chromatographic analysis of plasticizer.

References:

2. Fried J.R. - Polymer Science & Technology.
4. Arora M.G. & Singh M. - Polymer Chemistry.
5. Reed R. (Ed.) - Science for Students of Leather Technology.
6. Misra G.S. - Polymer Chemistry.
12. Ghosh P. - Polymer Science and Technology of Plastics and Rubbers.
14. Gustavson-The chemistry & Reactivity of Collagen
FE-409: ENVIRONMENTAL SCIENCE AND POLLUTION CONTROL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Environment and ecology: Introduction, components of environment, factors affecting environment.

Tannery and environment: Tanning process and their environmental implications, major process sequences, chemical inputs and wastes - curing of hides and skins, beam house operations, tanning, post tanning activity - wet and mechanical processes, and finishing.

Water pollution: Introduction, definitions of water pollution, sources of water pollution, different types of water pollution and their harmful impacts on ground and surface water, factors affecting surface water pollution, classification of water pollutants and effects of the various types of pollutants.

Air pollution: Introduction, composition of air, sinks of atmospheric gases, chemical reactions occur in different spheres, smog formation in air, major sources of air pollution and impact on the environment, global and modeling climate change, green house gases and green house effect, acid rain and its effect, air pollutant and their characteristics, hazardous air pollutant (HAPs).

Soil pollution: Introduction, sources of soil pollution, detrimental effects of soil pollutants, disease caused by soil pollution, treatment of soil pollutants, control of soil pollution.

Waste management: Definition of waste, integrated waste management, waste generation, separation, storage, collection, transformation of solid waste, transfer and transport, disposal water and air pollution control. Purification and reuse of water during leather processing, low float techniques using updated equipment, recycling of individual process liquors. International standard and exposure limits.

Recovery, regeneration, reuse and disposal of tannery wastes: Recovery of residues of effluents, organic materials, dissolved salts, energy, solid waste, recycling of lime / sulphide liquors, dehair, high chrome exhaustion techniques in chrome tanning, chrome recovery and recycling, oil and grease recovery, disposal of effluents

Biodegradability and biodegradation: Introduction, methods of measuring biodegradation, characteristics of tannery discharges, biological treatment of tannery effluents.

Tannery chemicals and waste generated in different tanning operations: Introduction, brief discussion of different types of chemicals used in leather processing.

Impact of tannery discharge on receiving waters: Introduction, presentation of receiving water and techniques used, results obtained and physico-chemical study, biological study and results obtained, specific analysis of chromium traces.
Pollution due to sulfur, chlorine and nitrogen: Introduction, ecotoxicity of chlorine, nitrogen and sulfur compounds; sulfur, chlorine and nitrogen in tannery effluents, study of effluents and treatment plants, balance in residual baths, tests for demonstrating nitrification.

Ecotoxicology: Introduction, toxic hazards and their control, controls of substance hazardous to health, hazard evaluation, risk assessment and control.

Safety manual on leather processing: Introduction, chemical safety, raw material handling, ranking of chemicals based on their hazard potential, storage instructions for hazardous and other chemicals, use of safety wares or personal protective equipment, upkeep of working and working surfaces.

Environmental Law and Industrial Pollution: Environmental pollution control, enforcement, monitoring and auditing, technical services government and industry policies, self-regulations by industry.

FE-410: ENVIRONMENTAL SCIENCE AND POLLUTION CONTROL PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Continuous assessment : 40, Course final examination 60</td>
</tr>
</tbody>
</table>

1. Determination of chloride content in alkaline solution.
2. Test for the identification of surface active groups.
3. Determination of bio-chemical oxygen demand from wastewater sample.
4. Determination of chemical oxygen demand from wastewater sample.
5. Determination of particle size and shape of supplied pigments.
6. Determination of chromium (VI) content from spent liquor using UV-VIS Spectrophotometer
7. Determination of Penta-chlorophenol using High Performance Liquid Chromatography
8. Determination of extractable fat content from leather sample
9. Identification of Phenolic components from leather using High Performance Liquid Chromatography
10. Identification of banned amines from leather using High Performance Thin Layer Chromatography

References:
1. Thierry Chambolle-Environment and Tannery
2. DE A.K. - Environmental chemistry
4. UNIDO- Tannery and Environment.
5. Chhatwal, G.R.-Environmental Analysis.
6. Mensink Ir. J.S.-Environmental Quick Scan Leather Products.
7. Chhatwal G .R.- Encyclopedia of Environmental Analysis (vol. 1, 2 &3)
8. Fifield & Haines. -Environmental Analytical Chemistry.
Tanning: Introduction, vegetable tanning- hydrolysable tanning and condensed tanning, resin tanning, synthetic tanning, aldehyde tanning, chrome-vegetable combination tanning.

Mechanical operation prior to post tanning operation: Sammying, splitting, shaving,

Re-chroming & Neutralization : Re-chroming- Objectives, chemicals used for rechorming, influencing factors for rechorming operation, Neutralization- Objectives, chemicals used for neutralization, influencing factors of neutralization, quality control during neutralization.

Retanning: Objectives, chemicals used for retanning, influencing factors of the retanning operation, quality control during retanning.

Dyeing & Fat liquoring: Dyeing- objectives, dyes and their classification, selection of dyes for specific leather production, influencing factors of the dyeing operation.

Fat liquoring- Objectives, selection of fat-liquors and oils, influencing factors of the fat-liquoring operation, quality control during fat-liquoring.

Finishing techniques: Shoe upper leather, nappa leather, glaze kid leather, nubuck leather, suede leather, patent leather, corrected grain leather, pull-up leather, and clothing leather.

Insole leather: lining leather, split leather.

Sole leather: Vegetable tanned sole leather, chrome tanned sole leather, and combination tanned sole leather.
FE-412: LEATHER TECHNOLOGY-II PRACTICAL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>Continuous assessment: 40, Course final examination 60</td>
</tr>
</tbody>
</table>

1. Standard upper leather manufacture
3. Standard lining leather manufacture
4. Manufacture of glaze kid finish
5. Manufacture of shrunken grain leather
6. Manufacturing process of patent finish leather
7. Manufacture of garments/clothing/gloving leather.
8. Manufacture of fur skin .

FE-413: PRODUCTION PLANNING AND QUALITY CONTROL

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5, Total Class: 45</td>
</tr>
</tbody>
</table>

Introduction: Concept of production system, scope and importance of production, elements of production, production planning, determination of factors of production and their control.

Plant Layout: Types of plant layout-production, process layout, activities and layout design, departmental space requirements, departmental arrangement.

Materials handling: Classification of material handling system, objectives of material handling, description and design of belt, chain conveyors, handling of raw materials, crust and finished leather, handling of chemicals(adhesive, primer, colouring materials)

Inventory management: Types of inventory control, inventory costs and control, classification of stocks-raw hides and skins stock, wet-blue stock, crust and finished stock, stock-in-process, safety-stock, out of stock, lead-time, reorder point, economic order quantity (EOQ), inventory models under certainty, inventory control under risk.

Resource scheduling: Introduction, objectives, scheduling and sequencing, gantt chart, linear programming, transportation model, network analysis, critical Path Method (CPM), programme evaluation and review technique (PERT), critical path and determination of minimum member of works.

Sales forecasting: Introduction, purpose of sales forecasting, methods of sales forecasting, time series analysis of sales forecasting, forecasting for new products, co-ordination between sales, manufacturing and purchase departments.
Productivity concept:
Introduction, productivity of materials, land, building, machine and manpower, factors contributing to productivity improvement. Techniques for productivity improvement:
Introduction, work content and ineffective time, productivity improvement by reducing work content, productivity improvement by reducing ineffective time, management of productivity. Work study:
Introduction, basic procedure, prerequisites of conducting a work study, human factors, the influence of working condition, Ergonomics. Method study and Work measurement

Quality: Definition of quality and quality control, important terminology used in quality control, quality function, quality planning and improvement, parameters for fitness for use.

Quality policies and objectives: Need for quality policies, corporate quality policies, quality policies for specific parameters and formulation of quality policies, quality objectives, zero defects.

Total quality management (TQM): Total quality management concept, internalization of quality, customer driven quality activity, system development for TQM, ideal TQM system, application of TQM on leather industry.

Quality control for different stages of leather-products manufacturing: Quality control in pattern cutting- cutting of bags, wallets, belts, jackets, dresses etc; quality control during skiving and splitting, closing -cementing, priming, sewing, decoration creating with different accessories; quality control during finishing- spraying, ironing, polishing, handing, storage, preservation, packaging and delivery.

Health and safety in leather products manufacture: Hazards and potential accidents, safety measures.

Quality assurance in leather products manufacture: Quality assurance, quality control, raw materials, design department, production planning and control in cutting department, during preparation for sewing, in the sewing room, intermediate inspection, final inspection, cost of quality, cost of conformance, cost of non-conformance.

Quality management systems:

Environmental management systems: Introduction, ISO 14000 series: structure of the ISO 14001 standard, occupational health hazards and industries, environmental impact assessment (EIA) and audit, environmental audit (EA), environmental management plan.

References
01. European Organization of Quality Control; Glossary of Terms Used in Quality Control. Berne, Switzerland.
06. UNIDO, Acceptable Quality standards in the Leather and Footwear Industry.
07. Roland Kilgus - Clothing Technology
FE-415: ENTREPRENEURSHIP AND BUSINESS DEVELOPMENT

<table>
<thead>
<tr>
<th>Class per week</th>
<th>Credit</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Course final Exam: 70, In-course assessment: 25, Class Attendance: 5. Total Class: 45</td>
</tr>
</tbody>
</table>

Business - Meaning, element, characteristics, function, importance, advantages, relation with economics

Entrepreneurs - Meaning, function, qualities, factors, role of business entrepreneurs

Business method and Business organization – Meaning, importance, distinction, types, principles, evolution, factors influence

Sole proprietorship business – Meaning, features, advantages, importance, fields suitable for sole proprietorship business

Partnership business - Meaning, element, advantages, disadvantages, contents of Partnership deed, power of Partner, reconstruction of Partnership business, difference between sole trade ship and Partnership business.

Joint Stock Company - Meaning, characteristics, advantages, disadvantages, difference between JSC & Partnership business, classification of JSC & Private and public limited company.

Reference:
- Business systems & commercial letter- Md. Khalekhuzaman
- B. I. B Ghosh – Business organization, A. Mukherjess Co.
- M. C. Shukla – Business organization & Management.
FE-416: PROJECT WORK AND SEMINAR

| Credit: 2 | তথ্যমনস্তা তথ্যমনস্তা:
| | ৭৫
| | Seminar: 25 |

Project and Seminar:

Each student is required to submit a report on the project assigned to him/her by the department. Prior to the submission of the project report, each student should present a seminar based on the work done.

FE-418: INDUSTRIAL TRAINING

| Credit: 2 | Marks: 50 |

Duration - 2 months

FE-420: COURSE VIVA

| Credit: 2 | Marks: 50 |